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INTRODUCTION

As part of the US effort to create a comprehensive, even if low-fidelity, 
covariance evaluation (Ref. 1), Argonne National Laboratory has the 
responsibility for performing an overall quality assurance of the file.  

As part of this QA effort, we have performed an eigenvalue analysis of each 
of the symmetric LB=5 sub-subsections in the present version of the low-
fidelity covariance evaluation.  

For this study, we wrote a small, special-purpose checking code, starting from 
a collection of subroutines extracted from the GANDR system (Ref. 2). 



SUMMARY OF NEGATIVE EIGENVALUES

We examined the covariance matrices associated with the LB=5 sub-subsections.  
We found significant negative eigenvalues in 44 of the 373 materials tested, 
around 12% of the files.  By "significant", we mean negative eigenvalues that are 
much larger in absolute value than the small values that result from the rounding 
of covariances to 6 significant figures in formatted files.

MT   Eigenvalue  MATs with this Negative Eigenvalue in MT

18   3.897E02  8931  9025  9028  9031  9034  9043  9046
                 9134  9219  9340  9343  9349  9352  9428
                 9431  9449  9452  9458  9552  9553  9628
                 9649  9652  9655  9752  9755  9852  9855
                 9858  9861  9867  9914  9915  9936
 
18   9.743E03  9131  9137  9234  9240  9243  9246  9546
                 9643  9646
 
102  6.336E03  528



The frequent repetitions of just two negative eigenvalues, -3.897E-02 and 
-9.743E-03, in the list above is the result of including the very same relative 
covariance matrix in many fissionable materials in the Low-fidelity data set.  The 
34 evaluations listed above as having an eigenvalue of -3.897E-02 all have the 
same 12-energy-bin covariance matrix for the fission reaction (MT=18, 
MT1=18).  This matrix is shown below.

Relative Covariance for All MATs with Eigenvalue -3.897E-02
 
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .090 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .090 .072 .072 .072 .000 .000 .000 .000 .000 .000
.000 .000 .072 .090 .072 .072 .000 .000 .000 .000 .000 .000
.000 .000 .072 .072 .090 .072 .000 .000 .000 .000 .000 .000
.000 .000 .072 .072 .072 .090 .072 .072 .072 .000 .000 .000
.000 .000 .000 .000 .000 .072 .090 .072 .072 .000 .000 .000
.000 .000 .000 .000 .000 .072 .072 .090 .072 .000 .000 .000
.000 .000 .000 .000 .000 .072 .072 .072 .090 .072 .072 .072
.000 .000 .000 .000 .000 .000 .000 .000 .072 .090 .072 .072
.000 .000 .000 .000 .000 .000 .000 .000 .072 .072 .090 .072
.000 .000 .000 .000 .000 .000 .000 .000 .072 .072 .072 .090



ANALYSIS
 

This covariance matrix is mainly block diagonal, but with three overlapping 
blocks. This is possible if there are 3 independent sources of error, and 
(1) one source induces a fully correlated covariance of size 0.072 in bins 3-6, 
(2) a second induces a fully correlated covariance of size 0.072 in bins 6-9, 
(3) a third induces a fully correlated covariance of size 0.072 in bins 9-12.
One can begin by adding these three partial covariance matrices together.  

It appears that there is an additional, fully uncorrelated source of error that 
(1) increases the variances in all energy bins from 3 to 12,
(2) has a constant magnitude of 0.018.  
This diagonal matrix can be added to the previous matrix.

These steps reproduce the data values shown in color above, except for groups     
6 and 9, where the diagonal elements (variances) have the wrong value,
cov(a

6
,a

6
) = cov(a

9
,a

9
) = 0.072 + 0.072 + 0.018 = 0.162

To correct for this, we have to add, along the diagonal, additional variances that 
are zero everywhere except in the (6,6) and (9,9) positions.  To get the desired 
matrix shape, they would have to have the (impossible) values of 0.072!



The best way to detect occurrences of mathematically impossible covariance 
matrices like this is to calculate the eigenvalues of covariance matrices of interest.  
An n x n covariance matrix has n eigenvalues.

Each eigenvalue is represents the variance of a set of n effectively independent 
linear combinations of the parameters.  The specific linear combination associated 
with a given eigenvalue is defined by the eigenvector associated with that 
eigenvalue.  

To make this clearer, consider a simple 3-parameter problem with the following 
covariance matrix, obviously related to the fission cross section covariances 
discussed above.
          0.090   0.072   0.000
D(a) =  [ 0.072   0.090   0.072 ]
          0.000   0.072   0.090

Note that parameter 2 is part of the 1-2 "correlated block" and part of the 2-3 
"correlated block."  The eigenvalues of this matrix are 1.1823E02, 
9.0000E02, and 1.9182E01.  The eigenvector associated with the negative 
eigenvalue is
V = [ 5.0000E01 7.0711E01  5.0000E01 ]



Consider that there exists an integral quantity z 
z = S a

where the sensitivity matrix S contains the following values:
S = V = [ 0.5  0.51/2  0.5 ]

By the usual "sandwich rule" of error propagation, the variance of z is

D(z) = S D(a) ST =   d
ij  

S
i
 S

j
i, j =1, k

=  0.090*0.5*0.5    0.072*0.5*0.51/2     +0.0
     0.072*0.5*0.51/2     +0.090*0.5        0.072*0.5*0.51/2

         +0.0              0.072*0.5*0.51/2     +0.090*0.5*0.5

= 0.090  0.072*21/2 

D(z) = 1.1823E02

Thus for the particular function z of the parameters a, the specified covariance 
matrix yields a negative variance (and hence imaginary standard deviation), 
which is obviously non-physical.  Note that the numerical value of the variance 
of z is exactly equal to the troublesome negative eigenvalue.



ISSUES NOT RELATED TO EIGENVALUES
In the course of the processing of the low-fidelity covariance files, a few clerical 
errors were found, and these points are summarized below.

A.  6Li (MAT=325), MT=2
In 6Li (MAT325), MT=2, the NI-type sub-subsection with LB=5 has the value of 0 
as the lowest energy in the grid, instead of the required 1.e-5 eV.

B.  natC (MAT=600), (MT,MT1)= (4,4)
14N (MAT=725),  (MT,MT1)= (4,4)
16O (MAT=825),  (MT,MT1)= (4,4)

Each of the listed covariance subsections contain an NC-type sub-subsection 
indicating that MT=4 was evaluated as a difference between the total cross section 
and the nonelastic over the energy range from 1.e-5 eV to 20 MeV.  At the same 
time, it an NI-type sub-subsection covering the energy range from 1.e-5 to 150 
MeV.  According to Para. 33.3.3.3 in the manual, the "F-values" in the NI-type 
sub-subsection must be zero in any energy region covered by both NI-type and 
NC-type sub-subsections.  In fact, the evaluator has set to all the covariances in the 
NI-type sub-subsection equal to zero.  A better approach would be to remove it.



C.  19F (MAT=925), MT= 4, 16, 22 and 28
The evaluation for 19F raises a number of interesting issues.  For one thing, it 
includes a sub-subsection with LB=8 in each of the self-reaction subsections.  In the 
current manual, the inclusion of LB=8 is encouraged as a general practice.  However, 
LB=8 is easy to mis-use, and there is little apparent practical need for it.  For these 
reasons, I recommend against the widespread use of LB=8.

The evaluation includes subsections for the reaction pairs (4,16), (4,22), (4,28), 
(16,22), (16,28) and (22,28).  In each of these subsections, covariances are stored in 
an NI-type sub-subsection with LB=5, with the symmetry flag LS set to 0 
(asymmetric matrix).  This combination is not recommended for general use, 
because only a single energy grid is provided, with NE energies.  A square array of 
dimension (NE-1)*(NE-1) contains the covariances, and the identical energy grid is 
used for both MT and MT1.  For example, in the 19F subsection (4,4), the energy grid 
includes 12 energies ranging from 115.84 keV to 20 MeV.  In the (4,16) subsection, 
on the other hand, the same reaction MT = 4 is represented on a grid that includes 
only 6 energies ranging from 10.985 MeV to 20 MeV, the same as MT = 16.  For all 
between-reaction covariances, I recommend against using NI-type sub-
subsections with LB=5 (use LB=6 instead).  This permits entry of a rectangular 
matrix, so each of the reactions can be represented on an appropriate energy grid.



GENERAL COMMENT REGARDING COMBINING LB=1 
WITH LB=5

Many of the evaluations in the low-fidelity file include, in the self-reaction 
subsections, both an NI-type sub-subsection with LB=1 and one with LB=5.  This 
is not illegal, but it seems a little illogical.  

If an evaluation includes a sub-subsection that treats a portion of the total 
covariance with the general matrix capability of LB=5, what is the advantage of 
adding a separate sub-subsection employing the simplified LB=1 block-diagonal 
format?  Why not just add the two components together to create a new LB=5 
matrix?  

This would make the file more human-readable.  For example, when only the LB=5 
format is employed, the complete energy grid used in the covariance evaluation is 
stored a single vector array.  

As a general practice, I recommend against including both LB=1 and LB=5 
sub-subsections in the same subsection.



CONCLUSION

As part of the US effort to create a comprehensive, but low-fidelity, covariance 
evaluation, Argonne National Laboratory has the responsibility for performing an 
overall quality assurance of the file.  

As part of this QA effort, we have performed an eigenvalue analysis of each of 
the symmetric LB=5 sub-subsections in the present version of the low-fidelity 
covariance evaluation.  This effort has revealed the existence of 44 evaluations 
with significant negative eigenvalues.  The reason is traced to the inclusion of 
overlapping regions of high correlation in many of the evaluations.  These 
matrices should be modified to avoid this problem.  

We also list some other areas where the quality of the files can be improved.
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