

Covariances and Neutron Dosimetry: Status Report and Future Needs

Presentation to 2008 CSEWG

P. J. Griffin

6 November 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

- Community processes for establishing dosimetry "standards"
- Recent dosimetry standards activities
- Status of nuclear dosimetry
 - Where we are vs. where we want to be!
- Specific dosimetry needs

Community processes for establishing dosimetry "standards"

- Standards organizations
 - ASTM International
 - ANSI/ANS
 - ISO TC85 (Secretariat, administered by ASTM)
 - » US Nuclear Technical Advisory Group (NTAG)
 - » nuclear fuel, reactor technology and radiation protection standards development efforts of the International Organization for Standardization (ISO).
- Regulatory organizations
 - NRC
- Research organizations
 - Sandia National Laboratories

ASTM International

- Subcommittee E10.05: Nuclear radiation metrology
 - Focus on neutron damage and pressure vessel surveillance
- Subcommittee E10.07: Radiation dosimetry for radiation effects on materials and devices
 - Focus on radiation test facilities
- Subcommittee F1.11: Nuclear and space radiation effects
 - Focus on radiation hardened electronics for space and electronic device test protocols.
 - Space parts working group
- Subcommittee E10.01: Radiation processing: dosimetry and applications
 - Food irradiation

ASTM International

- Consensus standards organization
 - International community
 - » Foreign participation facilitated by non-paying "affiliate" status
 - Volunteer standards support by community
 - Composition balance of users, producers, general
- Area specific international conferences/workshops
 - 14th International Symposium on Reactor Dosimetry every 3 years
 - 6th International Workshop on Dosimetry for Radiation Processing – yearly
 - 24th International Symposium on Effects of Radiation on Materials – every 2 years
- Journal of ASTM International (JAI) online peerreviewed journal
 Sandia National Laboratories

6423 PJG 5/6/2002

Unlimited Distribution

ANSI/ANS

- Voluntary consensus standards body
 - US national standards organization
- Examples of standards under revision with nuclear data emphasis:
 - ANS-6.1.2-200x, "Neutron and Gamma-Ray Cross Sections for Nuclear Radiation Protection Calculations for Nuclear Power Plants" (revision of ANSI/ANS-6.1.2-1999)
 - ANS-5.1-200x, "Decay Heat Power in Light Water Reactors" (revision of ANSI/ANS-5.1-2005)
 - ANS-8.12-200x, "Nuclear Criticality Control and Safety of Plutonium-Uranium Fuel Mixtures Outside Reactors" (revision of ANSI/ANS-8.12-1987; R1993; R2002)
 - ANS-19.1-200x, "Nuclear Data Sets for Reactor Design Calculations" (revision of ANSI/ANS-19.1-2002)
 - ANSI/ANS-8.27-2008, "Burnup Credit for LWR Fuel" (new standard, approved 8/14/08 – coming soon)

NRC

- 10 CFR50 Appendix H: reactor vessel surveillance program requirements
 - Pressurized thermal shock: PTS Rule, 10 CFR part 50.61
 - Fracture toughness testing, Charpy V-notch impact test
 - Embrittlement trend curve (ETC)
 - Advisory Committee for Reactor Safeguards (ACRS)
- ASTM generally develops the standard or methodology with community consensus, NRC adopts this standard or forms a "rule" based on the ASTM standard

- Internal CFRs and process documents cite the international standards
 - SNLRML dosimetry cross sections, built upon ASTM E1018
 - Reactor test fidelity, requirements justified/endorsed by ASTM E1854
 - Use of transistors for 1-MeV(Si) equivalent dosimetry, defined in E1855
 - 14-MeV source characterization, consistent with E496

- E496 14-MeV DT source characterization
 - Ballot for reapproval persuasive negative
- E1018 Reactor dosimetry cross sections
 - Ballot with major update, committee ballot approved, going to Society ballot
 - Need to consider additional acceptance criteria
- More rigorous "precision and bias" section required
 - round-robin testing for Test Methods and Practices

- Standard recommends:
 - Fluence determination from "flat" cross section, e.g. ⁹³Nb(n,2n)^{93m}Nb
 - Energy determination from ratio of increasing & decreasing cross section reactions, e.g. ⁵⁴Fe(n,p) / ⁵⁸Ni(n,2n)
- Issue was re-approval without update
 - ²⁷Al(n,p) uncertainty in 14-MeV region changed
 - » Standard: GLUCS, IRDF-90 evaluation, 15.6% uncertainty @ 14-MeV
 - » Latest: RRDF-2002, IRDF-2002, 1.5% uncertainty @ 14-MeV
 - » This difference does not reflect a typo!

- New evaluations by Zolotarev made available by IAEA
 - ²⁷Al(n,p) first available in 2006
 - ²⁴Mg(n,p) first available in 2008
 - ³²S(n,p) first available in 2008
 - ⁶⁴Zn(n,p) first available in 2006
 - ⁶⁵Cu(n,2n) first available in 2006
 - ⁶³Cu(n,2n) first available in 2006
- Of 14 cross sections in E496, 6 have recent updates that were not considered

Unlimited Distribution E496 Update Consideration

- Several of the previous cross sections used in E496 came from the GLUCS simultaneous least squares adjustment
 - ²⁷Al(n,p) with a 15.6% uncertainty @ 14-MeV
 - ³²S(n,p) with a 8% uncertainty @ 14-MeV
- The typical reactor dosimetry monitor, ⁵⁸Ni(n,p) is used in E496 and has a ENDF/B-VI specified uncertainty of 18.6% at 14-MeV
 - JENDL 3.3 has a smaller uncertainty, ~10%
- New uncertainties are all in the 1-2% region
- Selecting baseline evaluation based on the lowest uncertainty is <u>NOT</u> a valid criterion, but the most recent evaluation data is a valid criterion.

E496: Path Forward

- <u>Need</u>: Advice on the GLUCS simultaneous evaluation results
- <u>Desire</u>: An activity consistency test on reactions at 14-MeV
 - Pursue this with ASP with AWE and NPL cooperation
- <u>Consideration</u>: Is a least squares adjustment of "dosimetry-only" cross sections worth considering for our purposes?
 - Not proposed for general evaluations, just for a special dosimetry library
 - Strong negatives and positives

- Recent ballot of update of recommended dosimetry cross sections and associated nuclear data
- Recommended cross sections require:
 - Drawn from documented cross section evaluations
 - Covariance matrix consistent with cross section
 - Format: ENDF-6 or 640-multigroup with LSL covariance
 - *Specify associated nuclear data, i.e. half-life and natural abundance
 - *Validated for LWR-applications using benchmark field data
 - Periodic cross section file review
 - Easy cross section file availability

Update of E1018: Dosimetry Cross Sections (1/2)

Dosimetry Reaction	Material ID in Primary		Comment				
	LIDIALY	ENDF/B-VI.8 (4)	JENDL/D-99 (44)	JEFF 3.1 (9)	RRDF-2002 (40)	IRDF-2002 (36)	
⁶ Li(n,X)⁴He	325	Р				•	С, В, Р, М
¹⁰ B(n,X) ⁴ He	525	Р				•	A, B, P, M
²³ Na(n,γ) ²⁴ Na	1125	Р				•	F
²⁴ Mg(n,p) ²⁴ Na	1225					•	0
²⁷ Al(n,p) ²⁷ Mg	1325				Р	•	Q
²⁷ Al(n,α) ²⁴ Na	1325				Р	•	Q
³² S(n,p) ³² P	1625					•	R, T
^₄ Sc(n,γ) ^₄ Sc	2126					•	F, S
^{₄₀} Ti(n,p)₄⁵Sc	2225				Р	•	<i>G,</i> Q
∜Ti(n,p)⁴′Sc	2228				Р	•	<i>G,</i> Q
^{4°} Ti(n,p) ^{4°} Sc	2231				Р	•	Q
ို့Mn(n,γ)ိဳMn	2525	Р				•	F
^{ຉຉ} Mn(n,2n) ^{ຉ₄} Mn	2525	Р					V
⁵⁴ Fe(n,p) ⁵⁴ Mn	2625	Р				•	Т
⁵⁶ Fe(n,p) ⁵⁶ Mn	2631				Р	•	
⁵⁸ Fe(n,γ) ⁵⁹ Fe	2637		Р			•	F, U
^{nat} Fe(n,X)dpa	2600					•	J, I
^₅ °Co(n,p) ^₅ Fe	2725	Р					V
⁵⁹ Co(n,γ) ⁶⁰ Co	2726/2725					•	T, W
⁵⁹ Co(n,α) ⁵⁶ Mn	2712				Р		Т
⁵⁹ Co(n,2n) ⁵⁸ Co	2726/2725					•	Т
⁵⁸ Ni(n,p) ⁵⁸ Co	6433/2825				Р	•	
⁵⁸ Ni(n,2n) ⁵⁷ Ni	2825			Р		•	
⁶⁰ Ni(n,p) ⁶⁰ Co	2831	Р				•	

6423 PJG 5/6/2002

Unlimited Distribution

⁵⁹ Co(n,2n) ⁵⁸ Co	2726/2725					•	Т
⁵⁸ Ni(n,p) ⁵⁸ Co	6433/2825				Р	•	
⁵⁸ Ni(n,2n) ⁵⁷ Ni	2825			Р		•	
⁶⁰ Ni(n,p) ⁶⁰ Co	2831	Р				•	
⁶³ Cu(n,γ) ⁶⁴ Cu	2925	Р				•	
⁶³ Cu(n,2n) ⁶² Cu	2925	Р				•	
⁶³ Cu(n,α) ⁶⁰ Co	6435/2925				Р	•	
⁶⁵ Cu(n,2n) ⁶⁴ Cu	2931	Р				•	
⁶⁴ Zn(n,p) ⁶⁴ Cu	3025				Р		
⁹⁰ Zr(n,2n) ⁸⁹ Zr	4025		Р				
⁹³ Nb(n,γ) ⁹⁴ Nb	4125	Р				•	
⁹³ Nb(n,2n) ^{92m} Nb	4112				Р	•	
⁹³ Nb(n,n ') ^{93m} Nb	4112				Р	•	1
¹⁰³ Rh(n,n ') ^{103m} Rh	4511				Р	•	1
¹⁰⁹ Ag(n,γ) ^{110m} Ag	4731					•	S
¹¹⁵ In(n,γ) ^{116m} In	4931	Р				•	
¹¹⁵ In(n,n ') ¹¹⁵ In	4932/4931				Р	•	1
¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	7925	Р				•	Р
¹⁹⁷ Au(n,2n) ¹⁹⁶ Au	7925					•	
²³² Th(n,f)F.P.	9040	Р				•	1
²³⁵ U(n,f)F.P.	9228	Р				•	M, P
²³⁸ U(n,f)F.P.	9237		Р			•	M, I, P
²³ /Np(n,f)F.P.	9346				Р	•	1
²³⁹ Pu(n,f)F.P.	9437		Р			•	

Does E1018 Need More Changes?

- Do we need additional requirements on the recommended cross section evaluations?
 - Badikov as well as Gai&Pronyaev (nd2007) propose additional covariance acceptance criteria
 - » Specify positive definite covariance Yes, normally standard procedure
 - » Average and uncertainty in average of covariance elements is a conserved quantity – True but not useful for us
 - » Shape consistency (model vs. data) True but not useful for us
 - » Relation in integral uncertainties True but not useful for us
 - Badikov et al. suggested application of three of these metrics to the IRDF2002 in an ISRD13 presentation

Unlimited Distribution
Does E1018 Need More Changes?

- Force consideration of <u>resonance integral</u> match of evaluation to experiment
- Force consideration of <u>thermal cross</u> <u>section</u> match of evaluation to experiment – typically done
- Force <u>"consistency" checks</u> on reaction cross sections

Unlimited Distribution
Precision & Bias
Statements

- Precision and bias statements on test methods generally need to be validated by community round-robin testing
 - Too few dosimetry laboratories are willing to participate in testing
 - » Too few remaining dosimetry laboratories
 - » Costs are one reason not to participate
 - » Only down-side, no up-side for labs to participate, even given anonymity in results
 - One recent success: NIST coordinated a ²³⁷Np round robin
 - Interlaboratory comparisons are important to maintain and demonstrate competence

Major Concern: people/expertise

- Loss of expertise on dosimetry standards committees
 - Decline in industry participation
 - » Very pronounced in the reactor industry
 - Driven by even minimal cost of staff participation, lean six sigma trims this as "fat"
 - New reactor construction (even if in China) may turn this around
 - » Exception is the food processing area
 - Industrial funding and participation are very high in this area
- New people are not entering the nuclear area
 - Maintenance of capabilities is an issue
 - Many standards are being withdrawn for lack of committee expertise.
 - This does reflect a lack of current use but reconstituting the standard will be quite difficult
 Sandia National Laboratories

Unlimited Distribution

Specific Dosimetry Needs

- ²³⁷Np(n,f) cross section and uncertainty, 10 keV 500 keV MeV
 - Uncertainty decreased from 30% to <7%
 - Critical to spectrum adjustment, used with B₄C cover, currently uses a diagonal covariance matrix
- Covariance for covers, ^{nat}Cd, B₄C, ^{nat}Gd
 - For Cd, will take anything and will then evaluate the importance of a better cross section
 - For ¹⁰B, need to extend the covariance for the "standard" to include the full range
- Uncertainty in energy-dependent branching ratio for ⁵⁸Ni(n,p)^{58g+58m}Co
 - Used as early-time dosimetry monitor

- Needed for spectrum adjustment of reactor spectra
 - Required to eliminate model-induced tight correlation for energies > 2 MeV

Unlimited Distribution Update to covariance for 1-MeV(Si) Response

6423 PJG 5/6/2002

Unlimited Distribution

Questions???

Unlimited Distribution