Recent Activities & Initiatives in the ORNL Nuclear Data Program – USNDP 2008



Caroline D. Nesaraja, Michael S. Smith ORNL Physics Division

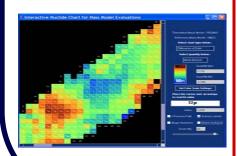
Activities



Nuclear Structure Data

A-chain Evaluations

Nuclear Astrophysics Data


- Evaluation and assessments of reactions critical for stellar explosion studies (coupling research and data activities)
 - Improve and expand functionality of the Computational Infrastructure for Nuclear Astrophysics
 - Facilitate a proposed new effort in nuclear mass evaluations

Nuclear Structure Data

EVALUATIONS

Responsibility: Actinide Evaluations A=241 – 249

A=152 evaluation in progress (Murray Martin)

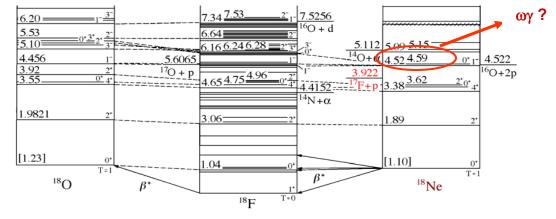
A=58 reviewed (Murray Martin)

A=58 (working on referee's review, discussions with Murray Martin & Balraj Singh) (Balraj Singh, Scott Geraedts, & Caroline Nesaraja)

A=69 (began preliminary work) (* Caroline Nesaraja)

243Cf	244Cf	245Cf	246Cf	247 Cf	248Cf	249Cf	250
10.7 M	19.4 M	45.0 M	35.7 H	3.11 H	333.5 D	351 Y	13.0
e	α	e				α	α
242Bk	243Bk	244Bk	245Bk	246Bk	247Bk	248Bk	2491
7.0 M	4.5 H	4.35 H	4.94 D	1.80 D	1380 Y	>9 Y	330
e					α		β-
241Cm	242Cm	243Cm	244Cm	245Cm	246Ст	247 Ст	2480
32.8 D	162.8 D	29.1 Y	18.1 Y	ອ500 ງ	4780 У	1.56E+7 У	3.48E-
e						α	α
240Am	241Am	242Am	243Am	244Am	245Am	246Am	247A
50.8 H	432.6 Y	16.02 H	7370 Y	10.1 H	2.05 H	39 M	23.0
e	α		α		β-	β-	β-
239Pu	240Pu	241Pu	242Pu	243Pu	244Pu	245Pu	2461
24110 Y	6561 Y	14.290 Y	3.75E+5 Y	4.956 H	8.00E+7 Y	10.5 H	10.8-
α	۵	β-	α		α		β-

* Participated in the Joint ICTP-IAEA Workshop On Nuclear Structure and Decay Data: Theory and Evaluation (2008)


Nuclear Astrophysics Data

¹⁸Ne Motivation: ${}^{17}F(p,\gamma){}^{18}Ne$ reaction is of significant importance in astrophysical events like novae and X-ray bursts

¹⁸Ne levels above 3.922 MeV are of astrophysical interest

Previous evaluation (Tilley et al. 1995): a low energy 3+ state in ¹⁸Ne based on the mirror ¹⁸O at E_x 5.378 MeV

¹⁷F(p,p)¹⁷F (D. Bardayan et al. 1999) first to observe the "missing" 3+ state (Ex=4.523 MeV)

TUNL Nuclear Data Evaluation Project, "A=18 Isobar Diagram "

First direct measurement using radioactive ¹⁷F nuclei produced at ORNL's HRIBF and using the DRS to directly detect the recoiling ¹⁸Ne from a H_2 gas target

599.8 keV resonance $\omega \gamma = 33 \pm 14(\text{stat}) \pm 17(\text{sys}) \text{ meV}$, corresponding to a width of $\Gamma \gamma = 56 \pm 24(\text{stat}) \pm 30(\text{sys}) \text{ meV}$.

Level Assessments in progress

Ph.D. thesis for K. A. Chipps, Colorado School of Mines, 2008

PHYSICAL REVIEW LETTERS (submitted)

First Direct Measurement of the $^{17}{\rm F}(p,\gamma)^{18}{\rm Ne}$ Cross Section K. A. Chipps et al.

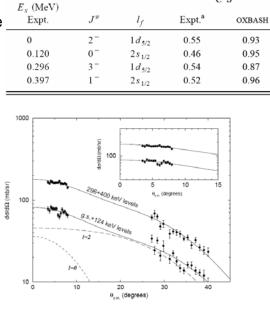
Nuclear Astrophysics Data

16N

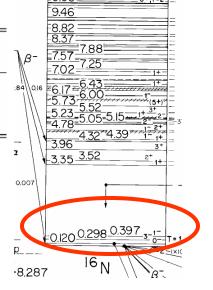
Motivation: ${}^{15}N(n,\gamma){}^{16}N$ reaction is important to nucleosynthesis calculations in AGB stars.

-Most recent evaluation (Meissner et al. 1996) concluded ${}^{15}N(n,\gamma){}^{16}N$ dominated by direct capture which is directly proportional to C²S of low-lying ${}^{16}N$ levels.

-Discrepant C²S between previous measurement and shell model calculations

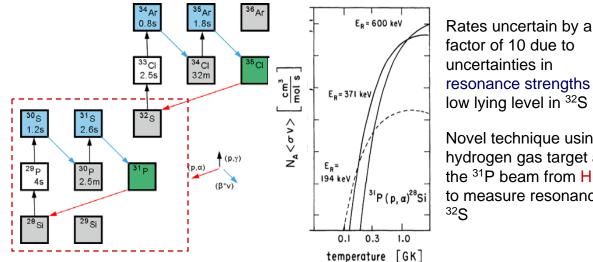

- $^{15}\mathrm{N}(d,p)^{16}\mathrm{N}$ in inverse kinematics studied at ORNL

- Cross sections extracted for the population of low lying states in $\rm ^{16}N$


- Measured C²S near unity as expected from shell model calculation

PHYSICAL REVIEW C (accepted for publication) Spectroscopic study of low lying ¹⁶N levels D. W. Bardayan et al.

 C^2S



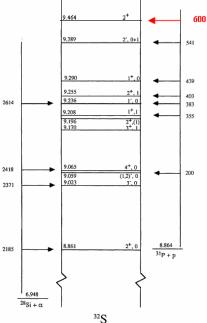
TUNL Nuclear Data Evaluation Project, "Energy Level Diagram ¹⁶N "

Nuclear Astrophysics Data

32**S**

Motivation: Influence of the ${}^{31}P(p,\alpha){}^{28}Si$ reaction on cyclic processing in the Si-P mass range

Strength of cycle depends on ratio of competing (p,γ) and (p,α) reactions


At T≥0.1G K, the reaction rate is dominated by the 600 keV resonance.

Preliminary results: $\omega\gamma(p,\alpha) = (2.1\pm0.2)x10^{-2} \text{ eV}$ for the 600 keV resonance

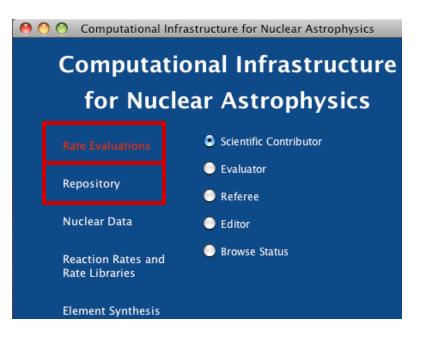
Level Assessments in progress

factor of 10 due to uncertainties in resonance strengths of low lying level in ³²S

Novel technique using a hydrogen gas target and the ³¹P beam from HRIBF to measure resonances in 32S

Portion of Ph.D. thesis for B.H. Moazen, University of Tennessee, Knoxville

Computational Infrastructure for Nuclear Astrophysics


New Features since USNDP-2007 meeting

• New tools to manage workflow of evaluations are online and available for use

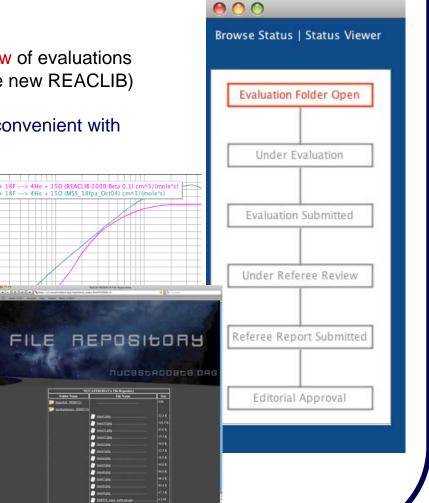
(Developed from discussions at the Trento Meeting in May 2007 and Vancouver in 2004)

- New online repository for sharing files
- expanded our existing capabilities with new simulations, new rates [KADONIS], new tools [bottleneck finder, waiting point finder] and enhanced speed

Presented by M.S. Smith at the Data Section Meeting for the Nuclei in the Cosmos Conference 2008

Computational Infrastructure for Nuclear Astrophysics

Rate Evaluation Toolkit


- Provide a set of software tools to handle the workflow of evaluations (from initiation to peer review to incorporation into the new REACLIB)
- Streamline tasks that are repetitive, mundane, or inconvenient with existing technologies

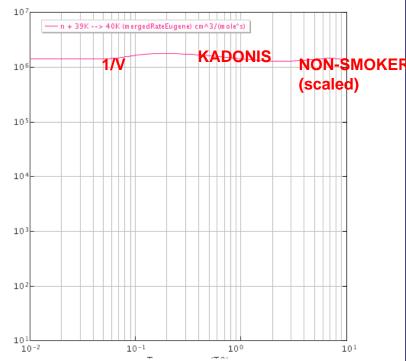
Rate

File Repository

- Share information that is not necessarily associated with any one evaluation
- browsing / downloading files can be done by our JAVA interface *or* by a web page

These tools are completely customizable and can be very helpful for all USNDP evaluations

Computational Infrastructure for Nuclear Astrophysics

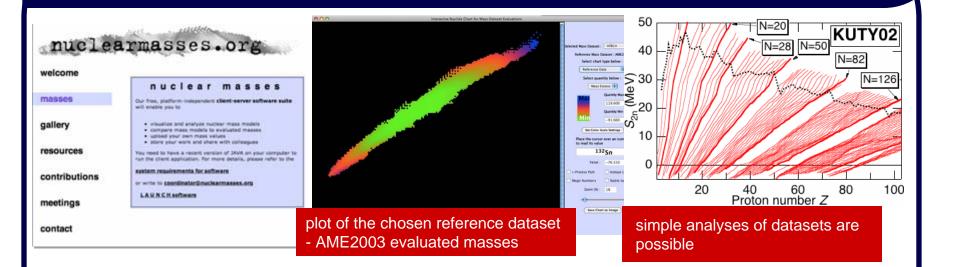

Example: fitting KADONIS rates

KADONIS s-process neutron capture rates are given over temperature range of 0.06 – 1.16 GK

REACLIB needs rates over the temperature range of 0.01 – 10 GK

we extended KADONIS rates (Noboyuki Iwamoto, JAEA)

at low temperatures with 1/v s-wave capture [unless data was available] at high temperatures with NON-SMOKER rate scaled to match KADONIS rate


we used our online tools to fit these rates with REACLIB parameters

undergrad student (Eugene Harris, Alabama A&M) fit 50 rates in 3 days

Rate

Rates are now available in a library for all to use

Nuclear Masses

nuclearmasses.org launched to aid research in nuclear masses and to help facilitate a proposed new effort in nuclear mass evaluations

SHARE and ACCESS work with scientific community (experimentalist, theorist, evaluators)

VISUALIZE, ANALYZE & COMPARE mass datasets