Covariances in XML

David Brown

PAD Name - Directorate/Department Name

Option: Auspice statement or other directorate information Lawrence Livermore National Laboratory

Outline

- What are covariances?
- Representing covariance data

Uncertainties, one measurement

- Width of histogram == uncertainty
- (insert verbiage about confidence intervals here)
- We always assume measurements have this Gaussian uncertainty shape

Users understand these

Uncertainties, N measurements

- N independent measurements, N uncertainties:
 - $X_1 \pm \delta X_1$
 - $X_2 \pm \delta X_2$
 - $X_3 \pm \delta X_3$
 - $X_4 \pm \delta X_4$
 - • •
- Type A evaluation

PAD Name - Directorate/Department Name

4

Simple uncertainty propagation

- Suppose we have N measurements and we propagate that uncertainty into another parameter:
 - $y = f(x_1, x_2, x_3, ...)$
- Want δy , do Taylor series about x_1 , etc.:
 - $y = f(x_1,...) + \Sigma_{ij} \delta x_i \delta x_j df (x_1,...)/dx_i df (x_1,...)/dx_j + higher order$
 - keeping leading order, get standard result:

 $\delta y = sqrt(\Sigma_{ij} \, \delta x_i \, \delta x_j \, df \, (x_1, \dots)/dx_i \, df \, (x_1, \dots)/dx_j \,)$

Type B uncertainty

Users start to tune out here

Coupled data and covariance

- Suppose have M measurements, y_j, and they are really a function of N other measurements, x_i. Define the covariance of y_i as
- $\Box \ \delta^2 \mathbf{y}_{jj'} = \Sigma_{ii'} \ \delta \mathbf{x}_i \ \delta \mathbf{x}_{i'} \ d\mathbf{f}_j \ (\mathbf{x}_1, \dots) / d\mathbf{x}_i \ d\mathbf{f}_{j'} \ (\mathbf{x}_1, \dots) / d\mathbf{x}_i$
- If you see a covariance matrix, think underlying measurement, even if you don't know what it was

Users are probably lost here

Storing it in XEndl

- Matrices can be big, how do we write them?
- How do we pack our data into them?
- XML representation

Storing really really big matrices

	Relation to		
Approach	Covariance Matrix	Pros	Cons
Covariance			Possibly very large;
matrix C	n/a	Simple	Must synchronize with uncertainties
Correlation		Simple; Don't	
matrix R	$C_{ij}=R_{ij}\delta x_i\delta x_j$	need to syncronize	Possibly very large
		with uncertainty	
Sensitivity			Complicated; Must
matrix O, S	$C_{ij} = \sum_{kl} O_{ik}^T S_{kl} O_{lj}$	May be very compact	synchronize with
			uncertainties
Normalized		May be very compact;	
Sensitivity	$C_{ij} = \sum_{kl} \delta x_i \delta x_j \hat{O}_{ik}^T S_{kl} \hat{O}_{lj}$	Don't need to	Very complicated
matrix \hat{O}, S		syncronize with	
		uncertainty	

Table 1: Possible approaches to the implementation of covariance matrices. The sensitivity matrix based approaches all require a notion of matrix multiplication which must somehow be denoted in the format and defined in any application code.

Packing the covariance matrix

An XML implementation

- Covariance, Correlation, Sensitivity and Normed Sensitivity matrices all can be stored as vanilla array's (array is a simple array implementation we have written)
- Surround array's with appropriate tags (covarianceMatrix, etc.)
- Hyperlink uncertainty fields in data to corresponding covariance data
- Coupling data in uncertainty field to specify range in covariance matrix that a certain data set points too (covarianceDatum, covarianceRange)

An XML implementation, cont.

- Can decouple uncertainty from covariance so users don't have to eat it all
- Can "discover" if two sets co-vary by comparing hyperlinks
- Evaluator is charged with doing the actual packing, and the user is charged with doing the unpacking
- Hyperlinks provide elegant solution to cross-material correlations

Backup slides

In general this is pretty hard.

Some very simple things have been done so far:

Cov. estimate for ⁷⁴As(n,2n)

PAD Name - Directorate/Department Name

13

How do you sample several random variables?

i) Independent variables: sample $P_i(x)$ independently

ii) Correlated data:

write $C = A^T A$ (C is the covariance matrix)

and sample using

 $x = \langle x \rangle + A^{T}z$, with z_i a vector of independent unit deviation random variables

