Astrophysics Task Force

Michael Smith,
Caroline Nesaraja
ORNL Physics Division

- Numerous USNDP institutions are pursuing projects that are beneficial for studies in nuclear astrophysics
- These activities include work on both nuclear reactions & nuclear structure

USNDP Contributors to this report:

Argonne National Laboratory /TUNL collaboration (F. Kondev /J. Kelley et al.)

National Nuclear Data Center - Brookhaven National Laboratory (B. Pritychenko et al.)

Oak Ridge National Laboratory (M.Smith et al.)

Nucleo - Cosmochronometer:

daughter

nucleus

¹⁸⁷Os

http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/tayu/ACT05E/04/0403.htm half-life is 4.35×1010y

¹⁸⁷Re/¹⁸⁷Os cosmochronometer can be used to date the age of the r-process nucleosynthesis

•186Os produced only by s-process

β-decay

parent nucleus

¹⁸⁷Re

- •¹⁸⁷Re produced only by r-process
- •187Os produced by s-process and by 43.5 Gyr decay of ¹⁸⁷Re – cosmochronometer
- However, metastable state in ¹⁸⁶Re may provide weak path to make ¹⁸⁷Re in s-process
- level structure of ¹⁸⁶Re must be understood

Tools that measure the elapsed time from a nucleosynthesis event to the present time

- •a parent nucleus is created in a nucleosynthesis event
- parent nucleus decays to daughter at a constant rate
- elapsed time since event determined from abundance ratio of parent to daughter nuclei
- must also account for any other nucleosynthesis events that can modify this ratio

http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/tayu/ACT05E/04/0403.htm

ANL (F. Kondev et al.)

Properties of ^{186m}Re and associated structures

¹⁸⁷Re-¹⁸⁷Os cosmochronometer can be used to date the r-process

D.D. Clayton, Ap.J. 139 (1964) 637.

Structures above the long-lived isomer in ¹⁸⁶Re were discovered and their properties revealed using the ¹⁸⁶W(d,2n) reaction at ANU & g-ray coin. technique (CAESAR array – 9 CSS Ge & 2 LEPS)

F. Kondev

ANL/TUNL Collaboration (F. Kondev, J. Kelley et al.)

¹⁸⁷Re(n,2nγ) cross section measurements at TUNL

Aims

- ☐ To confirm the level scheme obtained from the ¹⁸⁶W(d,2n) studies
- \square To observe gamma rays populating the isomer (singles) and deduce partial (n,2n γ) cross sections
- ☐ To obtain the total (n,2n) cross section that leads to the population of the isomer using statistical model analysis and the measured partial CS data

First experimental campaign in August 2007

 \square ¹⁸⁷Re(n, 2n γ)^{186m}Re @ 12 MeV neutrons at

TUNL

- array of 2 clovers and 2 LEPS detectors
- □~44 hr of beam time using natural Re target
- data analysis is in process
 F. Kondev

NNDC - BNL (B. Pritychenko et al.)

Online calculation of Maxwellian Averaged Cross Sections and Reaction Rates using ENDF libraries

More details in the next presentation

"Astrophysics reaction rates" calculation using ENDF libraries" by B. Pritychenko

ORNL – (M. Smith et al.)

Nuclear structure of r-process nuclei

Provide nuclear structure information important for simulating r process nucleosynthesis in supernova explosions

(d,p) transfer experiments made with unique radioactive ⁸²Ge, ⁸⁴Se, ^{130, 132}Sn and ¹³⁴Te beams

Spectroscopic information for N=51 isotones; ⁸³Ge and ⁸⁵Se published in

J. S. Thomas et al Phys. Rev. C C 76, 044302 (2007)

J.S. Thomas et al. Phys. Rev. C C71, 021302 (R) (2005).

Analysis and
assessments in
progress to
extract energies,
spins and
spectroscopic
factors of single
particle levels of
131,132Sn and
135Te

ORNL – (M. Smith et al.)

Computational Infrastructure for Nuclear Astrophysics

- New features added to meet request of users in 50 institutes in 18 countries
- Workflow management tools being developed in support of new international collaboration in nuclear astrophysics data
- ORNL will provide software backbone for new effort
- Future: Monte Carlo approach to determine impact of reaction rate uncertainties – utilize covariance information

