FURTHER TESTS OF INTERNAL-CONVERSION THEORY WITH PRECISE γ- AND X-RAY SPECTROSCOPY TEXAS A&M PROGRAM TO MEASURE ICC: ¹³⁴Cs^m, ¹³⁷Ba

<u>N. Nica</u>, W.E. Rockwell, J.C. Hardy, V.E. Iacob, H.I. Park, J. Goodwin, *Texas A&M*, M.B. Trzhaskovskaya, *Petersburg Nuclear Physics Institute*

ICC's:

- Essential role in balancing nuclear decay schemes (crucial in precision applications)
- Theory vs. experiment discrepancies: <u>up to 10%</u> • Theory
 - Relativistic Dirac-Fock (RDF) best
 - Sensitive to 'hole'/'no-hole' treatment: K-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-16}$ s $\gg \sim 10^{-18}$ s
 - Theory alone can not decide which hole treatment is best

• Experiment (review of world data, *Raman et al.*)

- 100 ICCs of 0.5%-5% precision
- Average difference from theory is ≤ 1% whether or not the hole is included
- The 'no-hole' calculation was slightly favored
- Recommended precise re-measurement of 80.2-keV M4 transition of ¹⁹³Ir^m

• <u>Completed at Texas A&M</u> (*Nica et al. 2004*): α_K=103.0(8)

Theory	$\alpha_{\rm K}$	Δ (%)
No hole	92.3(1)	10.4(8)
Hole, frozen orbitals	103.5(1)	-0.5(8)
Hole, SCF of ion	99.7(1)	3.2(8)

Raman et al: PRC 66, 044312 (2002) *Nica et al:* PRC 70, 054305 (2004), PRC 71, 054305 (2005)

II. METHOD

$$\alpha_{K}\omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

- Suitable for only one K-shell converted transition
- N_K , N_γ measured
- ω_K from Schönfeld and Rodloff
- ε at 151 mm for ORTEC γ-X 280-cm³ coaxial HPGe:
 0.2%, 50-1400 keV Hardy et al., Helmer et al. 2003
 0.4%, 1.4-3.5 MeV Helmer et al. 2004
 Not know precisely for K x-rays (30-35 keV)

=> Ratio $\alpha_{\rm K}(\rm Cs)/\alpha_{\rm K}(\rm Ba)$

Schönfeld and Rodloff: Report PTB-6.11-1999-1, (1999) *Hardy et al:* Appl. Rad. Isot. 56, 65 (2003) *Helmer et al. 2003:* NIM A 511, 360 (2003) *Helmer et al. 2004:* Appl. Rad. Isot. 60, 173 (2004)

III EXPERIMENT

A. Source Preparation

Designed to ensure:

- Small absorption (<0.1%)
- Dead time (< 5%)
- Statistics (> 10⁶ for γ or x-rays)
- High spectrum purity
- Minimize activation time (0.5 h)

¹³⁴Cs^m Sources:

- 17.5 μg (0.11 μm) CsCl, 20 μg (0.14 μm) CsNO₃, 99.999+% pure, 100% ¹³³Cs natural abundance, hygroscopic
- 76 µm mylar backing
- Aqueous solutions dried under vacuum, on dry diluted insulin for homogeneity, checked at microscope
- Covered with 64 µm adhesive kapton (after activation)
- Activated at Triga/NSC of Texas A&M at ~7×10¹² n/cm²s
- T1(4.5 μCi), T3(2 μCi) @ start ACQ
- ¹³⁷Cs Sources for ¹³⁷Ba:
 - 1 μ Ci β sources (open) commercially available from IPL
 - 6.4 µm mylar backing

B. Spectra

- ADC: TRUMPTM-8k/2k / MAESTROTM (Gedcke-Hale DT)
- Energy range: 10 keV 2 MeV
- Acquired: 80 spectra, 1000 h, decay curve analysis

III ANALYSIS

A. Impurity Analysis

Based on ENSDF data, and n-activation and decay analysis:

•
$${}^{134}Cs, T_{1/2} = 2.0652(4) y$$

 $\circ {}^{0}\!\!/_{0}\beta^{-} = 100, \qquad {}^{134}Ba x-rays$
 $\circ {}^{0}\!\!/_{0}\epsilon \text{ negligible, (}^{134}Xe)$

• ¹²²Sb,
$$T_{1/2} = 2.7209(3)$$
 d
 $\circ \% \epsilon = 2.41(12)$, ¹²²Sn x-rays
 $\circ \% \beta^{-} = 97.59(12)$, ¹²²Te x-rays

• 124 Sb, $T_{1/2} = 60.20(3)$ h o ${}^{9}\!\!/_{0}\beta^{-} = 100$, 124 Te x-rays

• ⁸⁰Br^m, T_{1/2} = 4.4205(8) h

$$\circ \frac{9}{6}$$
IT =100, ⁸⁰Br^m 37.1 γ
 $\circ \frac{82}{8}$ Br, T_{1/2} = 35.282(7) h

Total impurities relative to pure Cs Kx:

T1_20.30(2)%T1_30.87(3)%T3_10.52(4)%

B. Corrections

- 138.7y electronic conversion: -0.81(5)%, Cs Kx
- Attenuation in sample: 0.13(1)%
- Voigt shape of x-rays peaks (simulation): 0.13%, Cs&Ba Kx
- Left-tail backscattering (empirical):-0.8(3), Cs/Ba Kx

Comparison

	$\alpha_{\rm K}$ ratio	Δ , this exp
This experiment	30.01(20)	
hole(frozen orbital)	29.96	0.2 (7) %
hole(SCF)	29.87	0.5 (7) %
no hole	29.52	1.6(7) %
Experiment (Raman et al.)	28.82(51)	