

RESONANCE COVARIANCE FOR ACTINIDES AT ORNL

Nuclear Data Group Nuclear Science and Technology Division Oak Ridge National Laboratory

Luiz Leal

USNDP Meeting

November 8, 2006

OBJECTIVE

Generate resonance parameter covariance for major actinides:

²³³U, ²³²Th, ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, and others

Make the data available to the user community through the Evaluated Nuclear Data Files (ENDF)

TOOLS

• EVALUATION TOOLS:

SAMMY CODE

- Evaluation code used for data and uncertainty evaluations in the resonance region
- Used also to check the results (average cross sections)
- To my knowledge SAMMY is the only available capability that generate R-matrix resonance parameter covariance
- PROCESSING TOOLS: NJOY/ERRORJ and AMPX/PUFF
 - ERRORJ (Japan)
 - PUFF (ORNL)

COMPUTER CODE SAMMY

•Used for analysis of neutron, charged-particle crosssection data.

•Uses Bayes' method (generalized least squares) to find parameter values.

•Uses R-matrix theory, Reich-Moore approximation (default) or multi- or single-level Breit-Wigner theory.

•Generates covariance and sensitivity parameters for resonance region (generalized least squares)

Application Average Group Cross Sections

$$\Phi_g \overline{\sigma}_{xg} = \int_{E_g}^{E_{g+1}} \sigma_x(E) \Phi(E) dE$$

with

$$\Phi_g = \int_{E_g}^{E_{g+1}} \Phi(E) dE$$

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

5

Covariance Matrix for Group Cross Sections

If $p_1, p_2, ..., p_n$ are evaluated resonance parameters such that

$$\sigma_x = \sigma_x(p_1, p_2, \dots, p_n)$$

Then

$$\delta\overline{\sigma}_{xg} = \sum_{j} \frac{\partial\sigma_{xj}}{\partial p_{j}} \delta p_{j}$$

Group Covariance Matrix

$$<\delta\overline{\sigma}_{xg}\ \delta\overline{\sigma}_{xg'}>=\sum_{j\,k}\frac{\partial\sigma_{xj}}{\partial p_{j}}<\delta p_{j}\ \delta p_{k}>\frac{\partial\sigma_{xk}}{\partial p_{k}}$$

Covariance of the group cross sections depends on the covariance of the resonance parameters *p as*

$$< \delta p_j \delta p_k >$$

These quantities are calculated (evaluated) with SAMMY !!

Resolved Resonance Region

R-Matrix Resonance Parameters:

Formalism most used resonance formalism in ENDF/B is based in the Reich-Moore (RM) methodology

In general the RM formalism each resonance is represented by five parameters

$$E_r \Gamma_\gamma \Gamma_n \Gamma_{f1} \Gamma_{f2}$$

Covariance Evaluation Memory Estimation for SAMMY Dominant contribution to the SAMMY array (sensitivity matrix): Number of resonances N_{res} Number parameters per resonance N_{par} (E_r , Γ_p , Γ_m , Γ_{f1} , Γ_{f2}) Number of experimental data points N_{dat} (auxiliary grid) **SAMMY requested memory size:** $Mem = (N_{res} \times N_{par} \times N_{dat}) \times 8 \text{ bytes}$ **SAMMY computation of the Resonance Parameter Covariance Matrix** (RPCM) requires a memory size of approximately $2 \times Mem$

Covariance Evaluation for ²³⁹Pu

Full covariance has been generated in the energy range from 10⁻⁵ eV to 2.5 keV (RR) at ORNL

SAMMY memory size estimation No. of resonances = 1045No. of varied parameters per resonance = 5 No. of data points = 20,000Mem= $(1045 \times 5 \times 20,000) \times 8$ Memory needed = $2 \times Mem \sim 1.7$ Gbytes

ERRORJ Processed Covariance (Total Cross Section)

ERRORJ Processed Covariance (Fission Cross Section)

U. S. DEPARTMENT OF ENERGY

JT-BATTELLE

ERRORJ Processed Covariance (Capture Cross Section)

Concluding Remarks

- Resonance covariance data are generated at ORNL using SAMMY code
- Data have been converted into ENDF format and processed with PUFF and ERRORJ
- Data have been used in sensitivity calculation at ORNL using the sensitivity analysis code TSUNAMI

