Nuclear Structure at GANIL

G. de France, GANIL

USNDP meeting, BNL, Nov. 6-7, 2006

Outline:

A.Introduction: the facility in brief **B.**Nuclear structure at GANIL today C.... and tomorrow D.Conclusions

A. Introduction: the facility in brief

B. Nuclear structure at GANIL today

I. New shell gap at N=34 or not?
II. N and Z=20: the « island of inversion » and isospin symmetry.
III. The N=28 shell gap.
IV. Summary of results from SPIRAL1.

I. A new shell gap at N=34 or not?

The experiment: deep inelastic reaction in inverse kinematics with thin target

Beam : ${}^{238}U$ @ 5.5 MeV/u, (i ~ 2pnA) (N/Z=1.58) ~ 12% above barrier

Target : ⁴⁸Ca (1 mg/cm²) (N/Z=1.4)

 Grazing angle (lab.) : scattered projectile ~ 11°
 Recoiling targetlike ~ 40°

VAMOS + EXOGAM at 35° relative to beam axis

Detection of energetic targetlike residues at the focal plane

« Typical » results: ⁵⁰Ca

Outcome:

- Technique works very nicely: more γ-rays as compared to usual thick target experiment (γ-rays in ⁵²Ca; ⁵³Ca observed)
 Some improvements envisaged
- But real breakthrouh from « intense » RIBs

II. N and Z=20: the « island of inversion » and isospin symmetry

Is there a Z=20 « island of inversion »?

- « Island of inversion » established around N~20
 - Due to *np* interaction $(\pi d5/2 vd3/2)$
 - What are the frontiers?
 - What is the nature of the 2nd excited state: 3or 4+?
- Is there an equivalent around Z~20?
 - The same orbitals are active => same effect?
 - But proton unbound...
 - <u>However</u>: the same np interaction makes ³⁴Si and ³⁶S « doubly magic »!

Nombre de neutrons N :

=>³⁴Ca and ³⁶Ca should therefore also be « doubly magic »

Experimental technique: double step process

- In-beam γ-spectroscopy of ³⁶Ca with 1n removal reactions from ³⁷Ca beam:
 - 40Ca → 37Ca → 36Ca
- Search for ³⁴Ca using 2n removal reactions from ³⁶Ca beam:
 - $-40Ca \rightarrow 36Ca \rightarrow 34Ca$

E(2+) energies for N, Z=20 and MED

On-line results

- 2+ state observed in 36Ca with E(2+) > Sp and S2p (~ 2.6 MeV)!
 - Z=20 shell closure very strong → 2+ state is a neutron excitation → decay via gamma
 - $E(2+) \sim 2.94$ MeV i.e. 350 keV lower than its T=2 mirror nucleus ³⁶S
 - Large MED (120 keV for ³²Ar/³²Si) probably due to the pure n(p) configuration of the 2⁺ state in ³⁶Ca(³⁶S) and maybe reflecting better the isospin symmetry breaking of the nuclear interaction.

Nombre de neutrons N >

III.⁴²Si: the N=28 shell gap s. G

S. Grévy et al.

Role of the Z=14 sub-shell gap on the proton configuration ?
Is the gap N=28 robust / reduced / vanished ?

nature Vol 435|16 June 2005|doi:10.1038/nature03619

LETTERS

'Magic' nucleus ⁴²Si

J. Fridmann¹, I. Wiedenhöver¹, A. Gade², L. T. Baby¹, D. Bazin², B. A. Brown², C. M. Campbell², J. M. Cook², P. D. Cottle¹, E. Diffenderfer¹, D.-C. Dinca², T. Glasmacher², P. G. Hansen², K. W. Kemper¹, J. L. Lecouey², W. F. Mueller², H. Olliver², E. Rodriguez-Vieitez³, J. R. Terry², J. A. Tostevin⁴ & K. Yoneda²

2p-removal cross section: ⁴⁴S→⁴²Si

Observation of the ⁴³Si Notani et al. PLB542(2002)

Measurement of $t_{1/2} = 12.5 \pm 3.5$ ms Grévy et al. PLB594(2004)

Experimental 2⁺ energies :

> Same trend observed for 5/2+ in neighboring nucleus ${}^{43}P$: σ_{1p} (${}^{44}S->{}^{43}P$) = 4 ± 1 mb

⁴²Si: SM calculations

Modifications of the interaction to fit the data:

- ➢ pairing reduced by 300 keV to reproduce exp. 2+ in ³⁶Si
- > d_{5/2}-fp shell monopole reduced to obtain Z=14 gap at 5.8 MeV

With this interaction:

all Si isotopes OK
 5/2⁺ in ³⁵P OK
 2⁺(⁴²Si): 810 keV
 the 2⁺ in ⁴²Si is a mixing of nh-np exitations for both p and n
 β₂ ~ - 0.4

Nombre de neutrons N >

IV-Topics studied with SPIRAL beams

-I-Beams of Borromean nuclei

- Full p-shell and a new excited state in ⁸He
- s-p inversion in ⁹He
- No signal from 4n
- Super heavy hydrogen : ⁷H
- Reaction with halo nuclei

-II- Magicity and interaction

- Shells around N=14 from ²⁴Ne(d,p)²⁵Ne
- Shells around N=16 from ²⁶Ne(d,p)²⁷Ne
- Shells around N=28 from ⁴⁶Ar(d,p)⁴⁷Ar

-III- Shapes and coexistence

- Coulomb excitation of ⁷⁴Kr
- -IV- Spectroscopic studies for astrophysics
 - Resonant scattering in ${}^{18}Ne+p => {}^{19}Na$ and ${}^{15}O+\alpha => {}^{19}Ne$
 - Resonant scattering ${}^{15}O+p => {}^{16}F$
 - -V- Fundamental interaction
 - First measure of β nucleus (β ν) correlation in a trap

C. Nuclear structure at GANIL tomorrow

the SPIRAL2 project

protons Z

Nombre de

http://www.ganil.fr/

Nombre de neutrons N >

Linac Accelerator

-Accelerator design: sources, RFQ, superconducting linac

RF systems

Quarter-wave resonators 2 cavity prototypes were constructed and tested in Nov.2004-Feb.2005

 β 0.07 cavity prototype

Linac Accelerator

Production target development

Carbon converter

Performances:

Accelerated FF beam intensities (pps) - Examples

Performances:

SPIRAL 2 yields for 10¹⁴ fissions/s after acceleration compared to other RNB facilities (best numbers for all)

Other possible RNB production mode

Performances:

Production of N=Z, light and heavy nuclei

Performances

Light High Intensity RIB

 $14N(d,n)^{15}O \sim 10^{12}$ pps

Isotope	A/Z	T _{1/2} , s	Production reaction	Isotope	A/Z	T _{1/2} , s	Production reaction
⁶ He	3	0.81	$^{9}Be(n,\alpha)^{6}He$	⁸ B	1.6	0.77	$^{12}C(p,\alpha n)^{8}B$
⁸ He	4	0.12	⁹ Be(¹³ C, ¹⁴ O) ⁸ He	¹⁰ C	1.7	19.3	$^{11}B(p,2n)^{10}C$
⁸ Li	2.7	0.84	$^{11}B(n,\alpha)^{8}Li \text{ or }^{9}Be(d,^{3}He)^{8}Li$	¹¹ C	1.8	1224	$^{11}B(p,n)^{11}C \text{ or } ^{14}N(p,\alpha)^{11}C$
⁹ Li	3	0.18	11 B(n, ³ He) ⁹ Lior ⁹ Be(⁷ Li, ⁷ Be) ⁹ Li	¹³ N	1.9	598	${}^{12}C(d,n){}^{13}N \text{ or } {}^{13}C(p,n){}^{13}N$
¹¹ Be	2.8	13.8	¹¹ B(n,p) ¹¹ Be	¹⁴ O	1.8	70.6	$^{14}N(d,2n)^{14}O \text{ or } ^{14}N(p,n)^{14}O$
¹⁵ C	2.5	2.45	${}^{9}\text{Be}({}^{7}\text{Li},p){}^{15}\text{C}$	¹⁵ O	1.9	122	$^{14}N(d,n)^{15}O \text{ or } ^{15}N(p,n)^{15}O$
¹⁶ N	2.3	7.13	${}^{16}O(n,p){}^{16}N$ or ${}^{10}B({}^{7}Li,p){}^{16}N$	¹⁷ F	1.9	64.5	${}^{16}O(d,n){}^{17}F$ or ${}^{14}N(\alpha,n){}^{17}F$
¹⁸ N	2.6	0.62	$^{18}O(n,p)^{18}N$	¹⁸ Ne	1.8	1.67	$^{19}F(p,2n)^{18}Ne$
¹⁹ O	2.4	26.9	$^{19}F(n,p)^{19}O$	¹⁹ Ne	1.9	17.3	$^{19}F(p,n)^{19}Ne$
²⁰ O	2.5	13.5	${}^{19}F(n,\gamma)^{20}O \text{ or } {}^{19}F(d,n)^{20}O$	²¹ Na	1.9	22.4	$^{19}F(^{3}He,n)^{21}Na$
²³ Ne	2.3	37.2	19 F(⁶ Li,2p) ²³ Ne or ²⁴ Mg(n,2p) ²³ Ne	²⁵ Na	2.3	59.1	25 Mg(12 C, 12 N) 25 Na or 25 Mg(n,p) 25 Na
²⁵ Ne	2.5	0.6	${}^{26}\text{Mg}({}^{13}\text{C}, {}^{14}\text{O}){}^{25}\text{Ne or } {}^{26}\text{Mg}(n, 2p){}^{25}\text{Ne}$	²⁶ Na	2.4	1.08	26 Mg(d, ² He) ²⁶ Na or ²⁶ Mg(n,p) ²⁶ Na
²⁷ Si	1.9	4.16	27 Al(d,2n) 27 Si	³⁵ Ar	1.9	1.77	35 Cl(p,n) 35 Ar

In-target (1liter volume) production yields:

Nombre de neutrons N

⁹Be(n,α)⁶He ~ 10¹³ pps

Regions of interest accessible with SPIRAL2 beams

See white paper at http://www.ganil.fr/

Some tentative key dates:

- Reference solution: November '06
- Delivery of draft safety document: September '07
- Test accelerator July '11
- Test production July '12

Total cost: 135 M€

Nombre de neutrons N :

Conclusions:

- Many new results on the structure of exotic nuclei which renew the field

oroto

Nombre de

-SPIRAL facility is reliable, gave and will give a lot of new results. Beam development to bridge first

-SPIRAL 2 is on the way