(Selected) Nuclear Structure Studies with Radioactive Ion Beam at HRIBF

Cyrus Baktash Oak Ridge National Laboratory

USNDP Meeting, BNL, November 2006

Modification of shell structure near neutron drip line

Questions:

- What is the shell structure near neutron drip line?
- How to experimentally determine quenching of the old or emergence of the new magic numbers?

Signatures of large shell gaps & magic numbers

Combinations of:

- Kinks in *1n* and *2n* separation energies
- Large E(2⁺) and small B(E2) -- signature of rigid spheres

 $E(2^{+})$

B(E2

- Small $\sigma(n,\gamma)$ (peaks in element abundances)
- Kinks in single-particle energies
- Kinks in radii

Ozawa et al., Phys. Rev. Lett. 84 (2000) 5493

Measurements to probe shell structure far from stability

- Gross properties:
 - Masses (binding energies)
 - Half lives
 - Radii
 - Level densities
 - $\sigma(n,\gamma)$ -- related to r-process abundances, [use (*d*,*p*)]
- Single-particle properties:
 - Energy, spin, parity, spectroscopic factors, g-factors
 - Parallel momenta in knock out reactions (fast beams)
- Collective properties:
 - Low-lying energy spectra (e.g., 2⁺ states, 4⁺)
 - B(E2) & electromagnetic moments
 - Higher spin states (band structures)

To measure & interpret these observables we need 3 pillars:

- Radioactive ion beams (intense; pure; up to ~7 MeV/u)
- Powerful detectors, new experimental techniques, novel targets
- Theory to interpret the data and to guide future measurement

The Ion Source On Line Method

Photofission at HRIBF

7

Broad Outline of Research Programs

- Nuclear Structure (Coulex, transfer reactions, incomplete fusion, g-factors, decay studies)
- Reaction Dynamics (sub-barrier fusion, break up, inverse fission)
- Nuclear Astrophysics (rp-process using p-rich RIBs -- capture, resonance)

HRIBF annually provides nearly 1500 hr RIBs and 2500 hr stable beams to users from the US and abroad

Accelerated Neutron-rich Radioactive Ion Beams (over 100 beams with intensities ≥10³ ions/sec)

Intensities of Accelerated Beams in Sn Region

Experimental Challenges With RIBs

- Experiments with radioactive ion beams are very challenging
 - » RIBs have low intensities (typically 4 to 7 orders of magnitude less than SIBs)
 - » High β & γ background due to the decay of RIBs
 - » Isobaric beam contamination
- How to cope with these problems?
 - » Low intensity: Maximize detection efficiencies of all subsystems
 - » High background: Require coincidences between two or more detectors
 - γ rays, charged particles, beam particles, recoils, recoil decays
 - » Isobaric contamination: Identify Z
 - Charged particles, x-ray, Bragg detector, ionization chamber, ΔE -E
- Nearly all RIB reactions are done in inverse kinematics
 - Kinematic focusing reaction products are forward peaked
 - Large Doppler shifts
 - Need highly segmented detectors (for both γ & charged particles)

Experiments are very challenging & require new tools & techniques

CHARMS (Clarion-HyBall Array, and RMS) Specifically designed for γ spectroscopy with RIBs

Foil plus multichannel plate

Neutron detectors

CLARION

11 segmented clover Ge detectors 10 smaller Ge detectors

HyBall

95 Csl detectors with photodiodes Forward array of DSSD, ΔE -E & "fan tail"

Reaction tagging by charged particles

Coulex Studies in the ¹³²Sn Region (with HyBall & CLARION)

- Isobaric impurity assessment is very important.
- We now use a Bragg curve detector to continuously monitor the beam composition
 - Bragg spectrum purified Ge

Coulex of ^{132,134}Sn using BaF Array

Beene, Varner, et al.

Trends of B(E2) for Sn & Te isotopes

- Surprising low B(E2) for ¹³⁶Te in the first exp't. This is contrary to Grodzins scaling

- A new measurement indicates 50% higher B(E2), in excellent agreement with Shell Model calculations (Naples & Tokyo)
- Small B(E2) in ¹³⁶Te attributed to dominance of neutron in the w.f.

- Grodzins' scaled E(2⁺) . B(E2) products for isotopic chains are not constant, but steadily decrease with increasing *N*
- Decrease in $E(2^+)$. B(E2) becomes steeper as we approach magic numbers
- The trend persists even across magic numbers & is not correlated with shapes (see Ba isotopes).

• Decrease in $E(2^+) \times B(E2)$ is not usually correlated with shapes

- This indicates that first 2⁺ exhausts a smaller fraction of En. Wt. Sum Rule in n-rich nuclei -- Weaker n-pairing increases n-contribution to the w.f. of 2⁺
- Proton-dominated states lie at higher energy, contributing more to EWSR
- Division by S_n seems to compensates for this, thus providing a better tool to predict B(E2) from known $E(2^+)$ values 19

Shapes & Collectivity: Sensitive tests of models in transitional nuclei

Triaxiality is reflected in simple quantities:

- Relative positions of 4_1 and 2_2
- Branching ratios of $(2_2 -> 2_1)/(2_2 -> 0)$
- Quadrupole moments

We have studied B(E2) of first 2⁺ in N~50 isotopes of Ge & Se

Challenges in Coulex of odd- and odd-odd nuclei

Need good γ energy resolution: large number of γ rays in the beam & its isobars

Need good γ efficiency:

- > fragmentation of B(E2) strength
- > intensity fragmentation due to branching
- > need for γ - γ coincidence data to establish reliable level schemes

Need high beam intensity

C.-H. Yu et al

g-factor measurements: Excellent probe of s.p. states

- Transient field technique -- Challenging: Large background due to thick target. Will be tested for ¹³²Te (Rutgers Group)
- Recoil into Vacuum Technique (magnitude only):
- Measure part- γ angular correlation for stopped and moving recoils to determine attenuation of angular distribution coeff's
- Method was applied to 132 Te, will be applied to 134 Te (& 136 Te)

Fusion-evaporation reactions with RIBs:

- Not a profitable reaction to make very neutron-rich nuclei (large X section, but evaporate 3 or more neutrons for ~ C targets; too hot!)
- However, it is an essential tool for production of p-rich nuclei; very useful for ⁵⁶Ni beam to reach ¹⁰⁰Sn region

Missing single-particle levels around ¹³²Sn

Evidence for Recoil Effects in Heavy-Ion Transfer Reactions*

D. G. Kovar, B. G. Harvey, F. D. Becchetti, J. Mahoney, D. L. Hendrie, H. Homeyer, W. von Oertzen, ‡ and M. A. Nagarajan Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 5 March 1973)

Revisit ¹³C(¹³⁴Te,¹²C)¹³⁵Te

- Established coincidence between a new γ (929 keV) and the previously known 1180; decay of $11/2^{-1}$ to the $7/2^{-1}$ ground state
- Used particle-gamma correlation data to established the multipolarity of 929 to be stretched dipole
- The energy of the new $i_{13/2}$ fits nicely into the systematics of N=82 isotones

424

p_{1/2}→p_{3/2}

• Plan to use same reaction with ¹³²Sn

¹³³Te

Radford et al

1100

900

700

500

300

100

Particle-gamma angular correlations

Proton "transfer": Incomplete Fusion with a ⁷Li target *Breakup of ⁷Li to (t+\alpha) produces t- and \alpha- like targets*

"1*p*-pickup" channel: Gate on alpha to select (*t*, 2*n*) "2*p* & 2*pn* pickup" channel: Gate on *t* to select (α , 2*n*), (α , *n*)

- Large cross section ~100 mb
- Can use thick targets;
 γ-γ coincidence becomes possible
- Populates all spin states;
- Promising for the π s_{1/2} state in ^{131,133}Sb
 Similar selectivity is expected for ⁶Li
- "*lp*-stripping" channel: Gate on two- α to select (*t*, α) or (⁷Li, ⁸Be)
- Very small cross section
- Selective population

Particle ID with HyBall

Angular distributions for transfer reactions in:

Normal Kinematics

*Inverse Kinematics: Challenging*Ang. Dist. not v. distinct (note linear scale)Poor energy resolution

(d, p) Transfer reactions in inverse kinematics: A test case with ^{124}Sn Planned experiments with $^{130,132}Sn$ |

Spectroscopic Factors for ⁸³Ge & other N=51

J. Thomas et al.

- Surprisingly low-lying " $1/2^+$ state," assigned based on l = 0
- $s_{1/2}$ should lie much higher; phonon contribution?
- Need y decay information (multipolarity & transition strength)

Summary

• We have begun a systematic study of s.p. & collective properties of nuclei near ¹³²Sn using accelerated radioactive ion beams:

- Coulex: B(E2) for ¹²⁶⁻¹³⁴Sn, ¹²⁹Sb, and ¹³⁰⁻¹³⁶Te:

- Effective charges in ¹³⁴Sn & ¹³⁴Te

- Systematic trends for B(E2) in n-rich Sn & Te

- Coulex of odd-A to better understand s.p. structures
- Moments: g-factor for ^{132}Te & planned Q measurements
- Transfer: Planned studies of 131,133 Sn by (d, p) & (^{9}Be , ^{8}Be)
- Incomplete fusion: "1-p" transfer to reach ¹³¹Sb
- No evidence for "unexpected" changes in shell structure near ¹³²Sn, which is not very far from stability.
- But we have succeeded in developing the necessary tools and techniques that could be applied to study drip line nuclei with more interesting ISOL beams at future facilities.