

Betty Tsang The National Superconducting Cyclotron Laboratory @Michigan State University

The National Superconducting Cyclotron Laboratory Michigan State University

(as of March 05)

A national user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications 282 employees, incl. 51 undergraduate and 50 graduate students, 24 faculty

User group of over 600 CCF users

National Superconducting Cyclotron Laboratory

Coupled Cyclotron Facility (2000)

World's most powerful superconducting cyclotron (1989)

Example Fragment Separation Technique (NSCL)

Projectile Fragmentation

お田 新田 田()

Spallation Target

- Fundamental science
 - Mechanism in the production of rare isotopes
 - study of basic properties of atomic nuclei
- Applications
 - Benchmark data needed to test simulation code.
 - Beam rate estimates for RI beam facilities
 - Design high power accelerators
 - tumor treatment
 - space radiation

Proton Accelerator

• nuclear waste transmutation

Rare Isotope Production (Mocko thesis & PRC, in press)

- Nearly 2X more isotopes are produced in fragmentation of ⁴⁸Ca than ⁴⁰Ca.
- Primary beams: ^{40,48}Ca, ^{58,64}Ni and unstable ⁶⁸Ni and ⁶⁹Cu beams.
- Data reveal deficiencies of EPAX parameterization.
- Improvement on theoretical understanding of the RI production mechanisms. NNDC data base for "fragmentation data" Publication of cross-sections (Nuclear Data Sheets)

Sherrill (2006)

Nuclear Science at the NSCL

mean time of flight (µs)

Experimental Areas at NSCL

ISOTOPE SCIENCE FACILITY AT MSU Developing Plans for the Future (10-Year Horizon)

ISF@MSU

Large intensity gains (factors of 100-100,000) over current capability rare isotope beams with energies between 0 and 200 MeV/nucleon

ISF Upgrade Options

Modular, expandable capacity to meet future science needs

- Multi-user capability, flexible science-driven selection of upgrade elements
 - Energy/nucleon: 400 MeV ²³⁸U, 539 MeV ¹²⁹Xe, 864 MeV ³He, 1122 MeV ¹H

Extracting spectroscopic factors from 40 years of (p,d) and (d,p) data

Spectroscopic Factors: measure the single particle nature of the valence nucleons.

Properties of Single Particle

Experimental SF :

⇒ Spectroscopic factor(SF)

measures the orbital configuration of the valence nucleons.

Independent Particle Model (IPM), SF represents how good can we describe the nucleus as a single particle plus a core.

Orbital description is accurate

Valence nucleon occupies more than one orbit \rightarrow LBSM.

Spectroscopic Studies from (p,d) & (d,p) transfer reactions

SF is one of the important properties to understand the structure of the rare nuclei.

Pros:

✓ *We know the exact state* of the nucleon transferred. ✓ *Good understanding of* the experimental technique and reaction theory (DWBA) & beyond ✓ Lots of data from past 40 years (NSR). **Cons: X** Do we measure the "absolute" spectroscopic factors? X Data appear to give inconsistent results

Spectroscopic Factors from literatures

Example: $1p_{1/2}$ neutron SF in ${}^{13}C = {}^{12}C+n$

• Published spectroscopic factors show large fluctuations from analysis to analysis

Discrepancies between data sets

Quoted experimental uncertainties are 6-20%

J. P. Schiffer et al., Phys. Rev. 164, 1274 (1967).
Z. H. Liu et al., Phys. Rev. C 64, 034312 (2001).
D.Fick, J,NUK,19,693 (1974) (EXFOR).

J. P. Schiffer et al., Phys. Rev. 164, 1274 (1967)
Z. H. Liu et al., Phys. Rev. C 64, 034312 (2001).
J. Lang et al., Nucl. Phys. A477, 77 (1988).
U.Schmidt-Rohr et al., Nucl. Phys. 53, 77 (1964).

Quality control from independent measurements

TWOFNR (Tostevin)

Soper-Johnson Adiabatic Approximation to take care of d-break-up effects.

Use global p and n optical potential with standardized parameters (CH89)

n-potential : Woods-Saxon shape $r_o=1.25$ fm & $a_o=0.65$; depth adjusted to experimental binding energy.

Include finite range & non-locality corrections

Apply the technique to a large data set

Ground state n-spectroscopic factors for 80 nuclei

Tsang et al, PRL 95, 222501 (2005)

Z=3	Li	6, 7, 8, 9
Z=4	Be	9, 10, 11
Z=5	В	10, 11, 12
Z=6	С	12, 13, 14, 15
Z=7	Ň	14, 15, 16
Z=8	0	16, 17, 18, 19
Z=9	F	19.20
$\overline{Z}=10$	Ne	21, 22, 23
Z=11	Na	24
Z = 12	Mg	24, 25, 26, 27
Z = 13	Al	27. 28
Z = 14	Si	28, 29, 30, 31
Z=15	P	32
Z=16	Ŝ	32, 33, 34, 35, 37
Z = 17	Č1	35, 36, 37, 38
Z = 18	Ār	36, 37, 38, 39, 40
Z = 19	K	39, 40, 41, 42
$\overline{Z}=20$	Ca	40, 41, 42, 43, 44, 45, 47, 48, 49
Z=21	Sc	45.46
Z=22	Ti	46, 47, 48, 49, 50, 51
Z=23	V	51
Z=24	Ċr	50, 51, 52, 53, 55

Jenny Lee, 2004 SURE student

Quality Control ?

80 nuclei from Li to Cr (~ 430 angular distributions)

Comparison with Endt's (Atomic Data and Nuclear Tables 19, 23 (1977)) best SF values in A=21-44 region

Compare with LB-Shell Model (Oxbash, B.A. Brown)

Measurements of Spectroscopic Factors

Measurements of Spectroscopic Factors

SF values and trends should be the same independent of measurement methods, i.e. (e,e'p), nucleon knockout and transfer reactions should give same SF values.

Lee, PRC73, 044608 (2006); Gade, PRL 93, 042501 (2004)

Approved experiments : p(⁴⁶Ar, d)⁴⁵Ar; p(³⁴Ar, d)³³Ar – to study possible quenching effects in strong and weakly bound neutrons in rare isotopes.

SF's of excited states for ²⁷Mg, ³⁰Si, ³¹Si, ³⁵S & ³⁶Cl
➤ The (unstable) mirror nuclei ²⁷P, ³⁰S, ³¹Cl, ³⁵K & ³⁶K are of astrophysical importance in nucleosynthesis processes.

➤no experimental (SF) data exist so reaction rates (and energy levels) rely on shell model calculations.

•Important to establish the accuracies of these calculations by comparing SF data to predictions.

Shi Chun Su, 2006 SURE student

³¹Si (mirror nuclei: ³¹Cl) T=3/2 Sn= 6.587 MeV

Comparisons to LB-SM (oxbash, B.A. Brown) calculations

Spin assignment from Systematics with SM

Summary

Last SF review was done by Endt in 1977. A new review of SF values is overdue with more data, better reaction models and better SM calculations; → gives directions for rare-isotope research.

Summer Undergraduate Research Experience, Chinese University of Hong Kong, (SURE) students

Jenny Lee (2004, ground states)

M.B. Tsang, et al, PRL95, 222501 (2005).

Summary

1. Last SF review was done by Endt in 1977. A new review of SF values is overdue with more data, better reaction models and better SM calculations; → gives directions for rare-isotope research.

Summer Undergraduate Research Experience, Chinese University of Hong Kong, (SURE) students

Jenny Lee (2004, ground states)

Shi Chun Su (2006, excited states)

Summary/Suggestions

- Last SF review was done by Endt in 1977. A new review of SF values is overdue with more data, better reaction models and better SM calculations; → gives directions for rare-isotope research.
- 2. Include projectile fragmentation cross-sections in NuDat as in spallation cross-sections.
- 3. Publications in Nuclear Data Sheets?
- 4. Direct inclusion of large sets of data from PRC, NP etc.
- 5. Search, search, search ... incorporate google search engine in the data base?

NSCL Reacceleration Stage Options

A1900/ Cyclotron Stopper/ Charge Breeder/ RFQ/ LINAC

In near future, transfer reactions will become an important and unique tool to understand structure and reaction mechanism.