Achievements and perspectives for the n_TOF facility at CERN

Alberto Mengoni IAEA, Vienna

The CERN n_TOF Facility

Experimental campaigns in 2002-2004: status of the data analysis & results

n_TOF-Phase 2

The n_TOF facility at CERN

somewhere around here -

www.cern.ch/n_TOF

The n_TOF Collaboration

CERN accelerator Complex

Linac(s): up to 50 MeV PSB: up to 1 GeV PS: up to 24 GeV

The n_TOF Collaboration

The n_TOF facility at CERN

n_TOF commissioned in 2001-2002

www.cern.ch/n_TOF

n_TOF beam characteristics

the neutron flux

2^{nd} collimator ϕ =1.8 cm (capture mode)

Performance Report CERN-INTC-2002-037, January 2003 CERN-SL-2002-053 ECT

The neutron fluence in EAR-1

Epergy range	Uncollimated	Capture mode	Fission mode
Energy range	[n/pulse/cm2]	[n/pulse]	[n/pulse]
< 1 eV	2.0E+05	3.1E+05	2.0E+06
1 eV - 10 eV	2.7E+04	4.5E+04	2.9E+05
10 eV - 100 eV	2.9E+04	4.7E+04	3.1E+05
100 eV - 1000 eV	3.0E+04	5.1E+04	3.3E+05
1 eV - 1 keV	8.6E+04	1.4E+05	9.3E+05
1 keV - 10 keV	3.2E+04	5.4E+04	3.6E+05
10 keV - 100 keV	3.9E+04	7.1E+04	4.7E+05
100 keV - 1000 keV	1.1E+05	2.3E+05	1.5E+06
1 keV - 1 MeV	1.8E+05	3.5E+05	2.3E+06
1 MeV - 10 MeV	8.3E+04	2.4E+05	1.7E+06
10 MeV - 100 MeV	2.8E+04	7.2E+04	5.1E+05
> 100 MeV	4.4E+04	1.2E+05	5.6E+05
1 MeV - > 100 MeV	1.6E+05	4.4E+05	2.7E+06
Total	6.2E+05	1.2E+06	8.0E+06

Note: 1 pulse is 7E+12 protons. Collimated fluence (fission and capture modes) is integrated over the beam surface.

n_TOF basic parameters

proton beam momentum	20 GeV/c
intensity (dedicated mode)	7 x 10 ¹² protons/pulse
repetition frequency	1 pulse/2.4s
pulse width	6 ns (rms)
n/p	300
lead target dimensions	80x80x60 cm ³
cooling & moderation material	H ₂ O
moderator thickness in the exit face	5 cm
neutron beam dimension in EAR-1 (capture mode)	2 cm (FWHM)

n_TOF beam characteristics

Beam profile @ 187.5 m

MicroMegas detector

J Pancin, et al. (The n_TOF Collaboration) NIMA 524 (2004) 102 J. Pancin et al. | Nuclear Instruments and Methods in Physics Research A 524 (2004) 102-114

ig. 9. Horizontal (a), vertical (b), 30° (c) experimental and simulated projected profiles between 10 and 100 eV at 186 m.

n_TOF beam

energy resolution

Performance Report CERN-INTC-2002-037, January 2003 CERN-SL-2002-053 ECT

Energy resolution @ 187.5 m (collimator for capture mode)

Neutron Energy	p-beam pulse width FWHM [cm]	moderation FWHM [cm]	ΔE/E
1 eV	0.0	3.0	3.0E-04
10 eV	0.1	3.0	3.2E-04
100 eV	0.2	3.3	3.5E-04
1 keV	0.6	5.1	5.5E-04
10 keV	2.0	7.9	8.7E-04
30 keV	3.4	10.2	1.1E-03
100 keV	6.2	18.0	2.0E-03
1 MeV	19.5	34.1	4.2E-03
10 MeV	61.7	16.9	6.8E-03
100 MeV	195.0	14.5	2.1E-02

 ΔE

E

4000

2000 1500

1000 500

0

0.2

0.4

0.6

0 / -9

0

0

0

0

0

0

D [[m s]

0

0

0

= 14.45

= 0.163

= -0.07

0.8

= 450.3

= - 305

43.5

$$= \frac{2}{L} \sqrt{\Delta L^2 + 1.91 \cdot E \cdot \Delta T^2}$$

(for example: **6**×**10**⁻⁴ @ 1 keV)

n_TOF TAC for (n,γ) measurements

• 40 BaF₂ crystals

12 pentagons & 28 hexagons 15 cm crystal thickness Carbon-fiber ¹⁰B-enriched capsules

• High detection efficiency: ≈100% (to be compared with 5% of C₆D₆ or 0.1% of Moxon-Rae)

Good energy resolution

(direct background suppression mechanisms based on combined multiplicity and energy deposition analysis)

• Full Monte Carlo simulations

all EM cascades capture events for BG determination

TAC efficiency & MC simulations

The 4.9 eV resonances of ¹⁹⁷Au has been used as a reference sample and as a validation of the MC method for the estimation of the ε_{det} under different conditions on E_{sum} and m_{γ} .

C Guerero, D Cano-Ott et al. (CIEMAT, Madrid)

TAC efficiency & MC simulations

The MC is capable of reproducing the E_{sum} spectrum for different multiplicities allowing to calculate very accurately the detection efficiency for the chosen analysis conditions

C Guerero, D Cano-Ott et al. (CIEMAT, Madrid)

n_TOF TAC for (n,γ) measurements

- Structure mounted in April-04
- 4π geometry: end of May-04
- 1.5 month commissioning
- Au(n,γ) & other standards

First measurement with a radioactive sample started in August 2004 $^{237}Np(n,\gamma)$

The n_TOF Collaboration

n_TOF fission detectors

•20x20 cm²

- •Isobutane gas 7 mbar
- •HV 500-600 V
- •3 mm between electrodes
- •1 anode (a few ns signal width)
- •Electrode thickness: 1.5 μ m (Mylar+Al)
- •Deposit thickness : 100-300 μ g/cm²
- •Backing thickness \pm 0.1 μ m (Al)
 - : 1.5 µm (Mylar)

•Fission event identification: T2 in coincidence with T1

•Gas: Ar (90%) CF₄ (10%)

•Gas pressure : 720 mbar •Electric field : 600 V/cm •Gap pitch : 5 mm •Electrode diameter : 12 cm •Electrode thickness: 15 μ m (Al) •Deposit thickness : 125 μ m/cm² •Backing thickness : 100 μ m (Al) •Window thickness : 125 μ m

www.cern.ch/n_TOF

Nuclear waste: TRU (1000 MW_e LWR)

FP

source: Actinide and Fission Product Partitioning and Transmutation - NEA (1999)

Nucleosynthesis: the s-process

Nucleosynthesis: the s-process & the r-process residuals

Neutron-Capture Abundances in CS 22892-052

Capture

¹⁵¹Sm

204,206,207,208Pb, 209Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96Zr, 93Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments 2002-4

- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and related Nuclear Technologies
 - Th/U fuel cycle (capture & fission)
 - Transmutation of MA (capture & fission)
 - Transmutation of FP (capture)
- Cross sections relevant for Nuclear Astrophysics
 - s-process: branchings
 - s-process: presolar grains
- Neutrons as probes for fundamental Nuclear Physics
 - Nuclear level density & n-nucleus interaction

The n_TOF Collaboration

Capture

¹⁵¹Sm

204,206,207,208Pb 209Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96**Zr** 93**Zr**

¹³⁹La

186,187,188<mark>0s</mark>

233,234

Fission

233,234,235,236,238

^{241,243}Am, ²⁴⁵Cm

²³²Th

²⁰⁹Bi

n_TOF experiments 2002-4

data analysis completed, results published
data analysis completed, paper in preparation
data analysis in progress

The n_TOF-Ph2 experiments

Capture measurements				
<u>Mo, Ru, Pd stable isotopes</u>	r-process residuals calculation isotopic patterns in SiC grains			
Fe, Ni, Zn, and Se (stable isotopes) ⁷⁹ Se	s-process nucleosynthesis in massive stars accurate nuclear data needs for structural materials			
<u>A≈150 (isotopes varii)</u>	s-process branching points long-lived fission products			
<u>^{234,236}U, ^{231,233}Pa</u>	Th/U nuclear fuel cycle			
<u>235,238U</u>	standards, conventional U/Pu fuel cycle			
^{239,240,242} Pu, ^{241,243} Am, ²⁴⁵ Cm	incineration of minor actinides			

(*) approved by CERN Scientific Committee (planned for execution in 2007)

The n_TOF-Ph2 experiments

Fission measurements	
<u>MA</u>	ADS, high-burnup, GEN-IV reactors
²³⁵ U(n,f) with p(n,p')	new ²³⁵ U(n,f) cross section standard
<u>²³⁴U(n,f)</u>	study of vibrational resonances at the fission barrier
Other measurements	
¹⁴⁷ Sm(n,α), ⁶⁷ Zn(n,α), ⁹⁹ Ru(n,α) ⁵⁸ Ni(n,p), other (n,lcp)	p-process studies gas production in structural materials
<u>Al, V, Cr, Zr, Th, ²³⁸U(n,lcp)</u>	structural and fuel material for ADS and other advanced nuclear reactors
<u>He, Ne, Ar, Xe</u>	low-energy nuclear recoils (development of gas detectors)
<u>n+D₂</u>	neutron-neutron scattering length

NEW target design

xz-squared target (40x40x55) with 5cm-thick cylinder moderator containers

P Cennini, V Vlachoudis, K Tsoulou, et al. (CERN/AB/ATB), October 2006

NEW: target design proposal

P Cennini, V Vlachoudis, K Tsoulou, et al. (CERN/AB/ATB), October 2006

The n_TOF Collaboration

The second n_TOF beam line & EAR-2

Flight-path length : ~20 m at 90° respect to p-beam direction expected neutron flux enhancement: ~ 100 drastic reduction of the t_0 flash

EAR-2: Optimized sensitivity

Improvements (ex: ¹⁵¹ Si	consequences for sample mass	
sample mass / 3 s/bkgd=1		✓ 50 mg
use BaF ₂ TAC	ε x 10	✓ 5 mg
■ use D ₂ O	Ф ₃₀ х 5	1 mg
use 20 m flight path	Ф ₃₀ х 100	10 μg

boosts sensitivity by a factor of 5000!

problems of sample production and safety issues relaxed

The n_TOF Collaboration

U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Marques¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtička³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Marques³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³, T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti1¹, C.Rubbia⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴, M.Wiescher²⁹, K.Wisshak⁸

40 Research Institutions 120 researchers

PS: all quoted documents are available online at

www.cern.ch/ntof

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103

 $MACS-30 = 3100 \pm 160 \text{ mb}$

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103 &

S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th ^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103 &

S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

 $<D_0> = 1.49 \pm 0.07 \text{ eV}$ $S_0 = (3.87 \pm 0.33) \times 10^{-4}$ $R_1 = 3575 \pm 210 \text{ b}$

The n_TOF Collaboration

¹⁵¹Sm

204,206,207,208Pb, 209Bi 232Th 24,25,26Mg 90,91,92,94,96Zr, 93Zr ¹³⁹La 186,187,188Os

for nuclear data

refereed journal

www.cern.ch/ntof

all infos available in

on the n_TOF website

evaluators:

publications

&

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103 & S Marrone et al. (The n_TOF Collaboration)

S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

TABLE IX. The ${}^{151}\text{Sm}(n,\gamma)$ cross section in the unresolved resonance region from 1 keV to 1 MeV.

Energy bin	$\sigma_{(n,\gamma)}$	Un	certainty (%)	
(keV)	(b)	Stat.	Syst.	Tot.
1-1.2	24.52	0.8	4.4	4.5
1.2-1.5	23.68	0.8	4.3	4.4
1.5-1.75	21.94	1.0	4.2	4.3
1.75-2	19.76	1.2	4.2	4.3
2-2.5	15.43	1.1	4.1	4.3
2.5-3	15.36	1.3	4.1	4.3
3-4	12.78	1.2	4.1	4.3
4-5	10.04	1.4	4.1	4.3
5-7.5	8.91	2.1	2.9	3.6
7.5-10	5.85	3.0	3.1	4.3
10-12.5	5.38	3.9	2.9	4.8
12.5-15	4.26	4.9	3.2	5.8
15-20	3.82	3.8	3.2	4.9
20-25	3.52	4.6	3.5	5.8
25-30	3.13	4.5	3.1	5.5
30-40	2.69	4.4	3.2	5.5
40-50	2.17	4.8	3.4	5.9
50-60	1.90	5.2	3.3	6.2
60-80	1.66	4.1	3.6	5.5
80-100	1.30	5.1	4.6	6.9

¹⁵¹Sm

204,206,207,208Pb, 209Bi

²⁰⁷Pb(n,γ)

Yield Yield

0.01

²³²Th
^{24,25,26}Mg
^{90,91,92,94,96}Zr, ⁹³Zr
¹³⁹La
^{186,187,188}Os
^{233,234}U
²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

accepted for publication in PRC (in press)

¹⁵¹Sm

204,206,207,208Pb, 209Bi

²³²Th ^{24,25,26}Ma

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

accepted for publication in PRC (in press)

substantial disagreement for E_n > 45 keV

The n_TOF Collaboration

¹⁵¹Sm

204,206,207,208Pb, 209Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

accepted for publication in PRC (in press)

TABLE II: Resonance parameters and radiative kernels from the analysis of the ${}^{207}\text{Pb}(n,\gamma)$ data measured at n_TOF^{*a*}.

-			(,)		
E_{\circ}	l	J	Γ_n	Γ_{γ}	$g\Gamma_{\gamma}\Gamma_n/\Gamma$
(eV)			(meV)	(meV)	(meV)
3064.700(3)	1	2	111.0(8)	145.0(9)	78.6(9)
10190.80(4)	1	2	656(50)	145.2(12)	149(14)
16172.80(10)	1	2	1395(126)	275(3)	287(30)
29396.1	1	2	16000	189(7)	234(9)
30485.9(5)	1	1	608(45)	592(50)	225(30)
37751(3)	1	1	50×10^{3}	843(40)	620(30)
41149(46)	0	1	1.220×10^{6}	3970(160)	2970(120)
48410(2)	1	2	1000	230(20)	235(20)
82990(12)	1	2	29×10^{3}	360(30)	444(30)
90228(24)	1	1	272×10^{3}	1615(100)	1200(80)
127900	1	1	613×10^{3}	1939(150)	1449(120)
130230	1	1	87×10^{3}	900(80)	675(60)
181510(6)	0	1	57.3×10^{3}	14709(500)	8780(300)
254440	2	3	111×10^{3}	1219(90)	2110(150)
256430	0	1	1.66×10^{6}	12740(380)	9482(280)
317000	0	1	$850{ imes}10^3$	10967(480)	8120(350)
bital angular	m	om	enta l and	resonance sp	pins J are fr

Ref. [17].

3% accuracy of the capture kernel

 ^{a}Or

²⁰⁷Pb(n,γ)

The n_TOF Collaboration

¹⁵¹Sm

204,206,207,208Pb, 209Bi

²⁰⁴Pb(n,γ)

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & submitted for publication to PRC, October 2006

Very low neutron sensitivity of capture γ-ray detection systems & high resolution The n_TOF Collaboration

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

submitted for publication to PRC, October 2006

E_{\circ} l	J	Γ_{γ}	$\Delta \Gamma_{\gamma}$	Γ_n	K_r	ΔK_r
(eV)		(meV)	(%)	(meV)	(meV)	(%)
480.3 1	1/2	1.33	4	3.0	0.92^{a}	2.7
$1333.8\ 1$	1/2	105	4	46.3^{b}	32.1^{a}	1.3
$1687.1 \ 0$	1/2	1029	0.7	3340	787^{a}	0.5
2481.0 0	1/2	514	1.1	5470	470^{a}	1.0
2600.0					8.35	6
2707.1 1	3/2	31.2	9	11.5	16.8	2
$3187.9 \ 0$	1/2	316	10	1.7	1.69	0.1
$3804.9\ 1$	1/2	280	8	66.4	53.7	1.6
4284.1 1	3/2	111	9	24.0	39.4	1.7
4647.5					2.57	9
4719.4 1	3/2	41.2	5	95.0	57.5	3
5473.2 1	1/2				79.0	1.6
5561.4	(1/2)	1.03	10	1.9	0.67	6.4
6700.5 0	1/2	312	3	4540	292	3
7491.0					19.0	0.5
8357.4 0	1/2	1286	1.9	45000	1250	1.9
8422.9					11.3	7
8949.6					22.9	3
9101.0	(1/2)	193	8	150	84.4	4
9649.3 0	1/2	1076	2	7860	946	2
10254					37.0	8
$11366 \ 1$	3/2	39.0	10	226	66.5	9
11722					22.8	9
12147					54.4	8

²⁰⁴Pb(n,γ)

FABLE IV: Aver	age neutron	capture cross	section	for ⁱ	²⁰⁴ РЬ.
----------------	-------------	---------------	---------	------------------	--------------------

E_{low}	E_{high}	Cross section	Statistical uncertainty ^a
(keV)	(keV)	(barn)	(%)
88.210	92.404	0.059	9
92.404	96.748	0.059	5
96.748	101.406	0.058	11
101.406	106.408	0.057	8
106.408	111.790	0.057	7
111.790	117.591	0.056	8
117.591	123.855	0.056	7
123.855	130.634	0.055	7
130.634	137.985	0.054	6
137.985	145.974	0.054	6
145.974	154.678	0.053	6
154.678	164.185	0.053	7
164.185	174.596	0.052	7
174.596	186.030	0.051	6
186.030	198.625	0.051	5
198.625	212.544	0.050	5
212.544	227.981	0.049	5
227.981	245.162	0.049	5
245.162	264.363	0.048	4
264.363	285.911	0.047	4
285.911	310.207	0.046	4
310.207	337.739	0.046	4
337.739	369.107	0.045	4
369.107	405.060	0.044	4
405.060	443.512	0.043	3

^aThis value has to be added in quadrature with the overall systematic uncertainty of 10%.
¹⁵¹Sm

204,206,207,208Pb 209Bi

²⁰⁹Bi(n,γ)

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. (The n_TOF Collaboration) Phys. Rev. C **74**, 025807 (2006)

Very low neutron sensitivity of capture γ-ray detection systems & high resolution The n_TOF Collaboration

Capture ¹⁵¹Sm 204,206,207,208Pb ²⁰⁹Bi 232**Th** 24,25,26**Mg** 90,91,92,94,96Zr, 93Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th 209**Bi** ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

²⁰⁹Bi(n,γ)

0.01

0.008

0.006

0.004

2.2

2.3

2.4

E_n (keV)

Yield

n_TOF experiments

C Domingo-Pardo, et al. (The n_TOF Collaboration) Phys. Rev. C **74**, 025807 (2006)

Very low neutron sensitivity of capture γ-ray detection systems & high resolution The n_TOF Collaboration

2.5

¹⁵¹Sm

204,206,207,208Pb 209Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. (The n_TOF Collaboration)

NEW MEASUREMENT OF NEUTRON CAPTURE . . .

²⁰⁹Bi(n,γ)

PHYSICAL REVIEW C 74, 025807 (2006)

Phys. Rev. C 74, 025807 (2006)

TABLE II. Resonance parameters ^a and radiative kernels ^b for ²⁰⁹ Bi.						
$\overline{E_{\circ}}$ (eV)	l	J	Γ_n (meV)	$\Gamma_{\gamma} (\text{meV})$	$g\Gamma_{\gamma}\Gamma_n/\Gamma$ (meV)	
801.6(1)	0	5	4309(145)	33.3(12)	18.2(6)	
2323.8(6)	0	4	17888(333)	26.8(17)	12.0(8)	
3350.83(4)	1	5	87(9)	18.2(3)	9.5(2)	
4458.74(2)	1	5	173(13)	23.2(22)	11.3(11)	
5114.0(3)	0	5	5640(270)	65(2)	35.3(11)	
6288.59(2)	1	4	116(18)	17.0(17)	6.7(7)	
6525.0(3)	1	3	957(100)	25.3(14)	8.6(5)	
9016.8(4)	1	6	408(77)	21.1(14)	13.0(9)	
9159.20(7)	1	5	259(45)	21.4(21)	10.9(11)	
9718.910(1)	1	4	104(22)	74(7)	19.5(21)	
9767.2(3)	1	3	900(114)	90(8)	28.7(26)	
12098					65(4) ^e	
15649.8(1.0)	1	5	1000	47(4)	20.2(17)	
17440.0(1.3)	1	6	1538(300)	32(3)	20.4(18)	
17839.5(9)	1	5	464(181)	43(4)	21.7(20)	
20870	1	5	954(227)	34.4(33)	18.3(17)	
21050	1	4	7444(778)	33(3)	14.8(13)	
22286.0(9)	1	5	181(91)	33.6(32)	15.1(15)	
23149.1(1.3)	1	6	208(154)	25.3(25)	14.7(15)	

^aAngular orbital momenta, *l*, resonance spins *J*, and neutron widths, Γ_n , are mainly from Refs. [27,28].

^bUncertainties are given as 18.2(6)≡18.2±0.6.

^cThis area corresponds to the sum of the areas of the broad *s*-wave resonance at the indicated energy, plus two *p*-wave resonances at 12.092 and 12.285 keV.

16% higher MACS for kT = 5-8 keV 81% r-process abundance for ²⁰⁹Bi

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La

186,187,188**Os**

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

Low PS duty-cycle favours meaasurements on radiactive samples

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & G Aerts et al. (The n_TOF Collaboration) Phys. Rev. C 73, 054610 (2006)

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

G Aerts et al. (The n_TOF Collaboration) Phys. Rev. C 73, 054610 (2006)

TABLE II. Different components of estimated systematic or correlated uncertainty in the measured cross section.

Component	Uncertainty (%)
PHWT	0.5
Normalization	0.5
Background	2.5
Flux shape	2.0
Total	3.3

For $E_n = 4$ keV up to 1 MeV full dataset is available on the PRC publication

E _{low} (keV)	E _{high} (keV)	Cross section (b)	Uncertainty (b)
3.994	4.482	0.958	0.020
4.482	5.028	1.281	0.021
5.028	5.642	1.097	0.016
5.642	6.331	1.004	0.014
6.331	7.103	0.912	0.013
7.103	7.970	0.919	0.013
7.970	8.942	0.848	0.013
8.942	10.033	0.817	0.012
10.033	11.257	0.800	0.012
11.257	12.631	0.787	0.012
12.631	14.172	0.761	0.012
14.172	15.902	0.729	0.011
15.902	17.842	0.685	0.011
17.842	20.019	0.613	0.010
20.019	22.461	0.641	0.010
22.461	25.202	0.566	0.009
25.202	28.277	0.545	0.009
28.277	31.728	0.513	0.008
31.728	35.599	0.497	0.009
35.599	39.943	0.468	0.009
39.943	44.816	0.456	0.008
44.816	50.285	0.413	0.007
50.285	56.421	0.365	0.006
56.421	63.305	0.346	0.006
63.305	71.029	0.318	0.006
71.029	79.696	0.275	0.005
79.696	89.421	0.248	0.005
89.421	100.332	0.229	0.005
100.332	112.574	0.220	0.004
112.574	126.310	0.204	0.004
126.310	141.722	0.192	0.004

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th(n,γ)

²³²Th

^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

RRR region analysis in progress

Capture

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

24,25,26Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

232**Th**

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration analysis in progress

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration analysis in progress

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

²⁵Mg(n,γ) From n_TOF

Very low neutron sensitivity of capture γ-ray detection systems & high resolution The n_TOF Collaboration

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Source: P Koehler & S O'Brien

Capture & transmission data (from ORELA) analyzed simultanously

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,}92,94,96Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

110

C 02

∑ 1.0225

C Moreau, et al. ND2004 Conference, Santa G Taglient<mark>e et al</mark>.

20% reduction in the capture strength (average)

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,}92,94,96Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Moreau, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – September 2004 G Tagliente et al. (The n_TOF Collaboration) NIC-IX, CERN, June 2006

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg 90,91,92,94,96<mark>Zr</mark> ⁹³Zr 139La 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

⁹³Zr(n,γ): raw data

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

R Terlizzi, et al. (The n_TOF Collaboration) CGS12 Notre Dame, IN, USA AIP Conference Proceedings 819 &

submitted for publication to PRC, October 2006

¹⁵¹Sm
^{204,206,207,208}Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg
^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

R Terlizzi, et al. (The n_TOF Collaboration) CGS12 Notre Dame, IN, USA AIP Conference Proceedings 819 & submitted for publication to PRC, October 2006

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Remarkable energy resolution and background conditions have allowed to determine the resonance parameters up to 9 keV

RI = 10.8 ± 1.0 barn average γ -widths: s-waves = 50.7 ± 5.4 meV p-waves = 33.6 ± 6.9 meV $<D_0>= 252 \pm 22 \text{ eV}$ $S_0 = (0.82 \pm 0.05) \times 10^{-4}$ $S_1 = (0.55 \pm 0.04) \times 10^{-4}$

¹⁵¹Sm
^{204,206,207,208}Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg
^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**Os**

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Very low neutron sensitivity of capture γ -ray detection systems & high resolution

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232**Th** 24,25,26**Mg** 90,91,92,9^{4,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th**

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al., (Dec. 2004)

n_TOF TAC in operation

²³³U(n,γ)

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg 90,91,92,9^{4,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232Th 209**Bi** ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

²³³U(n,γ)

W Dridi, E Berthoumieux, *et al.,* CEA/Saclay Paper in preparation (October 2006)

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg 90,91,92,94,96Zr, ⁹³Zr ¹³⁹La

186,187,188Os

233,234**U**

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

Figure 3: Neutron capture on ²³⁴U yield in the thermal region and for the first resonance obtained in the present experiment.

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232Th 24,25,26Mg 90,91,92,94,96Zr, 93Zr 139La 186,187,188Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm
<sup>204,206,207,208Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg
^{90,91,92,94,96}Zr, ⁹³Zr
¹³⁹La
¹³⁹La
^{233,234}U
²³⁷Np,²⁴⁰Pu,²⁴³Am
</sup>

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232**Th** ^{24,25,26}Ma ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am **Fission** 233,234,235,236,238 232Th 209**Bi**

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** 24,25,26Mg 90,91,92,9^{4,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232**Th** ^{24,25,26}Ma 90,91,92,9^{4,96}Zr, ⁹³Zr 139 a 186,187,188<mark>OS</mark> 233,234 ²³⁷Np ²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232Th 209**Bi** ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Ma 90,91,92,9^{4,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np²⁴⁰Pu,²⁴³Am Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

n_TOF ²³⁷Np σ (n, γ) compared to Evaluated Data Libraries

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232**Th** ^{24,25,26}Ma ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**Os** 233,234 ²³⁷Np²⁴⁰Pu,²⁴³Am **Fission** 233,234,235,236,238 232**Th** 209**Ri** ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²³⁷Np experimetal Yield fitted with SAMMY

¹⁵¹Sm
204,206,207,208Pb, 209Bi
232Th
24,25,26Mg
90,91,92,94,96Zr, 93Zr
¹³⁹La
186,187,188Os
233,234U
237Np 240Pu,243Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²³⁷Np Radiative Kernel from nTOF compared to JENDL

 $RK_{n_{TOF}}$ on average 3% below the RK_{JENDL} and 6% below the RK_{ENDF}

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232**Th** 24,25,26**Mg** ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>OS</mark> 233,234 ²³⁷Np²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232Th 209**Bi** ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232**Th** ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np²⁴⁰Pu,²⁴³Am **Fission** 233,234,235,236,238 ²³²Th 209**Bi** ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Ma ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np²⁴⁰Pu, ²⁴³Am Fission 233,234,235,236,238 232**Th** 209**Ri** ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²⁴⁰Pu Radiative Kernel from nTOF compared to evaluated data

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Ma 90,91,92,94,96<mark>Zr,</mark> 93Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

Capture

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Ma ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238**[]**

²³⁴U(n,f)

232**Th**

209**Bi**

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

PPACs & FIC-0 (2003)

An unprecedent wide energy range can be explored at n TOF in a single experiment
¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** 24,25,26**Mg** 90,91,92,9^{4,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am **Fission** 233,234,235,236,238 232Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments PPACs & FIC-0 (2003)

High-resolution data up to high(er) energies

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232Th 24,25,26Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232Th ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments PPACs & FIC-0 (2003)

High-resolution data up to high(er) energies

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Ma ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

FIC-0 (2003)

An unprecedent wide energy range can be explored at n_TOF in a single experiment

The n_TOF Collaboration

^{241,243}Am, ²⁴⁵Cm

²⁰⁹Bi

²³⁷Np

²³²Th

Fission 233,234,235,236,238

²³⁷Np,²⁴⁰Pu,²⁴³Am

¹³⁹La ^{186,187,188}Os

^{90,91,92,94,96}Zr, ⁹³Zr

^{24,25,26}Mg

233,234

²³²Th

204,206,207,208Pb, 209Bi

Capture

An unprecedent wide energy range can be

explored at n TOF in a single experiment

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi 232Th 24,25,26Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th 209**Bi** ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

An unprecedent wide energy range can be explored at n_TOF in a single experiment

Capture

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 232**Th** ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments FIC-0 (2003)

Higher fission x-section in the sub-threshold region

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** 24,25,26**Mg** ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188**OS** 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments PPACs (2003)

Higher fission x-section in the sub-threshold region

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am,

²⁴⁵Cm

n_TOF experiments

FIC-1 (2003)

High-resolution data up to high(er) energies

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi 232**Th** ^{24,25,26}Ma ^{90,91,}^{92,94,96}Zr, ⁹³Zr 139 a 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments FIC-0 (2003)

15% lower U8/U5 ratio at high energies

<u>back</u>

Capture studies: Mo, Ru and Pd

Motivations:

- Accurate determination of the r-process abundances (r-process residuals) from observations
- SiC grains carry direct information on s-process efficiencies in individual AGB stars. Abundance ratios in SiC grains strongly depend on available capture cross sections data.

Neutron-Capture Abundances in CS 22892-052

n_TOF-Ph2

Capture studies: Mo, Ru and Pd

- Setup: The n_TOF TAC in EAR-1
- (a few cases with $C_6 D_6$ if larger neutron scattering)
- All samples are stable and non-hazardous
- Metal samples preferable (oxides acceptable)

Cd 97 3 s	Cd 98 9,2 s	Cd 99 16 s	Cd 100 49,1 s	Cd 101 1,2 m	Cd 102 5,5 m	Cd 103 7,3 m	Cd 104 57,7 m	Cd 105 55,5 m	Cd 106 1,25	Cd 107 6,5 h	Cd 108 0,89	Cd 109 462,6 d	Cd 110 12,49	Cd 111	Cd 112 24.13	Cd 113 12.22
E.	0* *347, 1176, 107, 61	P ¹ 7 343, 672, 1983, P0, 0; m	P' 9937; 140; 583 m	n: 9.96; 1723; 2530:825 9, m	1, 0° √481; 1007; 505; 415 ₩	4, 61 3.2 5, 1462; 1449; 1050; 387 gl.m	6 5 ¹ 284:709 m	418717 7962 1802 1471607 1690 mug	+0.20	8. (1029 -)	+1A	* no y m e = 180	+0.06 + 11	hy 245, 151 and	+ 0,012 - 92	14.8 a 1017 a 1.500 a 03. 5 a 50. 5 a 50.
Ag 96 5,1 s	Ag 97 19 6	Ag 98 46.7 s	Ag 99	Ag 100	Ag 101	Ag 102 8m 18m	Ag 103	Ag 104 33,5 m 63.2 m	Ag 105 72 m 41,29 ±	Ag 106 836 24m	Ag 107	Ag 108	Ag 109 38,6 a 49,151	Ag 110	Ag 111 65 s 7,45 c	Ag 112 3,12 h
y 1416, 684 326, 107 86	5* 7880, 1294	P 7 853, 679 571	1,149 144	AN THE STREET	1,98. 581 57 176 1754	100 100 100 100 100 100 100 100 100 100	1/1 1/2 5/134	の日本の	1)(25) 0' 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)	15.9" 1943 1946 pt 3g	50		<u>1</u> 11	1050 1015 11-118 107 115 115 115 115 115 115 115 115 115 11	# 1.242 245 7 (245 - 1	₿ [~] 3.9 617; 1387
Pd 95	Pd 96 2,0 m	Pd 97 3,1 m	Pd 98 17,7 m	Pd 99 21,4 m	Pd 100 3.7 d	Pd 101 8,47 h	Pd 102 1.02	Pd 103 16.96 d	Pd 104 11.14	Pd 105 22,33	Pd 106 27,33	Pd 107	Pd 108 26,46	Pd 109	Pd 110 11,72	Pd 111 5,5 h 20,4 m 177 173
01/042 02/02- 37/3	y 125; 762; 500, 1085 IN	2005. 4775 793 8	112 883, 107 0	4 186 262 673 #	no μ* 04; 75 - 125. 9	4* 0,8 +296; 596 270 m	432	1357.)		1222	=0013 - 028	214 2	+0.17+7	- 140 m	+0.033+0.7	130 (0.10) (0.10) (1.10
Rh 94 7868 5548	Rh 95	Rh 96	Rh 97 44m 31m	Rh 98	Rh 99	Rh 100	HI 101	Rh 102 2.1 s 207 d	56,1 m 103	4,4 m 42 s	45 s 35.4 h	Rh 106 226 316 8708	21,7 m	Rh 108	80 s	Rh 110 27.75 3.93
1100 No. 1100 No. 1100 No. 1100 No.	1950 1137 1940 1137 1940	- #11 + 133 1000 #4	Line and	P. P	111 111 1111 1111 1111	Print SHE	207 107 945 108	00 00 00	3699) (CUL)	1033.) 108 1033.) 107 103	19 100 - 5000 -	-1812, 97-188 1946 - 1912 197	8 12 y 300, 381 g	「「「「「」」」	1327, 426 176: 291: 113 8	9274 (F-85 546 - 1,378 688, 445 481 (6)
RU 93	Hu 94 51,8 m	Ru 95 1.65 h	Ru 96 5,52	Ru 97 2,9 d	Ru 98 1,88	Ru 99 12,7	Ru 100 12,6	Ru 101 17.0	Ru 102 31,6	Ru 103 39,35 d	Ru 104 18,7	Ru 105 4,44 h	Ru 106 373,6 d	Ru 107 3,8 m	Ru 108 4.5 m	Ru 109 34,5 s
101	(907, 99), m	9006, 1097, 827 0	-925	216:324	1- 3	74	σ5.8	-5	# 1,3	497; 610. 1	+0.17	724: 465. 76; 316. 0:m; in 0,30	9 10,15	p1 3.2. y 194 - 848; 460, 375.	p= 1.3 + 165. 91 0	p* 2.3, 4.2 y 206; 226; 1929, 359
10.92 4,4 m	IC 93	TC 94 53 m 4.6 h	60d 35k	TC 96	92,2 d 4,0 10 ¹ s	4.2 · 10 ^a a	6,0 h 21- 10 ⁵ a	15,8 s	14,2 m	Tc 102	54.2 s	To 104 18.2 m	Tc 105 7,6 m	Tc 106 36 s	Tc 107 21,2 s	Tc 108 5,17 s
0* 42 11510:773 329 148	N45 113		N. L.	772	haa	β 0.4 y745:662	hy 141. 4 6 6 7 7 7 7 7 7	p 3,4	# 1.A	1419 1419 181 19 19 19 181 19 1485	57-222. 9348-138. 210	07 5.1. 7 358: 531; 535; 854; 860	81 3,4 143, 108, 321, 159	0" 7270-2230; 1969-2789	μ= 4,8 γ 103, 177, 106.	7242; 454; 706; 733; 1584
Mo 91	Mo 92 14,84	Mo 93 58h 35 597, 18 ² s	Ma 94 9,25	Mo 95 15,92	Mo 96 16.68	Mo 97 9,55	Mo 98 24,13	Mo 99 66,0 h	Mo 100 9.63	Mo 101 14,6 m	Mo 102 11,2 m	Mo 103 67,5 s	Mo 104 1,0 m	Mo 105 35,6 s	Mo 106 8,7 s	Mo 107 3,5 s
1502 1233		a		-112	-15		+0.14	740, 182. 78 15 8	567 #0,19	192: 691: 610: 605	y212; 148; 224	17 1501-404: 688:510	(** 2.2 v 69; 70, 36	()** 4,9 17,85;77;140 181,250	0 ⁷ 1.406; 54; 519	p 5.8. 7400:00 364:484
Nb 90	60.9 d (88) >	Nb 92 10.15 d 25 10**	ND 93 16,13 a 130	ND 94 6,25 m 2:10 ⁴ a 0:01	ND 95 86,6 h 34,97 d	ND 96 23,4 h	ND 97 53 s 74 m	Nb 98 51 m 2.9 s	ND 99 25m 15s	Nb 100	Nb 101 7,1 s	Nb 102	Nb 103 1,5 s	Nb 104 0.85 4.85	Nb 105 2,95 s	Nb 106 1,0 s
2 12 Dit	9 4 5' - 7 1205 2'	in It	5 (21) (+ 1,1 + 1) 1 (- 1,1 + 1)	2 300 - 200 2 - 200 - 20	e ⁻ 06 β ⁻ 1,2 γ 195 γ 201	B 0.7 7778 560 1091	11773 118 11773 118	120 140 140 140 140 140 140 140 140 140 14		1 335 + 533 653, 536 1343 190	61 4,3 9 278, 158; 480; 441, 467	128 128 128 231 138 231 118 231	(f - 5.4 + 103; 641, 539, 139	5-312 5-112 200 32	р ^т у 95; 247; 910; 138	р 7 179, 354; 7 14
Zr 89 4,16 m 28,4 h	Zr 90 51,45	Zr 91 11,22	Zr 92 17,15	Zr 93 1,5 10 ^s a	Zr 94 17.38	Zr 95 64.0 d	Zr 96 2,80	Zr 97 16,8 h	Zr 98 30.7 s	Zr 99 2.1 s	Zr 100 7,1 s	Zr 101 2,1 s	Zr 102 2,9 s	Zr 103 1,3 s	Zr 104 1,2 s	Zr 105 ~1 s
54.4 1507.9	u - 0.014	112	102	p 0.06 m v - 2		6 ⁺ 0.4, 1,1 y757, 726 0	26- + 6.000	9 508: 1148. 365 m	0°20 000 0	~489,548: 594. 0 m	87 2.8; 3,0 9 504; 401 9	5 119; 206 200; 1958 2010, 598	β ⁺⁺ 4.6 γ 600; 535 65	р у 248: 164; 128, 120	9 101: 445. 505. 9	β" γ 128
Y 88 106,6 d	Y 89 16,0 s 100	Y 90 3,19 h 84,1 h	Y 91 49,7 m 58.5 d	Y 92 3,54 h	Y 93 10,1 h	Y 94 18,7 m	Y 95 10,3 m	Y 96 9.0 + 534 +	Y 97	Y 98 29 s 0.55 s (*** 1 88	Y 99 1,47 s	Y 100	Y 101 448 ms	Y 102	Y 103	Y 104
1856.966	1 ans : (111).	400 5 (13) (10) (10) (10)	1- 556	1 3.6. 7 954: 1405: 561: 440	HT 2.9 1267: 947: 1918	8° 49 7919, 1139; 551	4 064: 2176. 3577: 1324 2633.	1777 1777 1787 1787 1788	40 1300 y 140 340 441,501 180 by 360 05	4 4123 9 1004, 3341 801 1060 80 80	5" 63,7,5 y 122,724.	- Base	v 08; 134; 232; 662 (0)	+ 162, + 600; 307, 1211 1091, 1026		
	50	4,764	5,835 52	5,866	5,979 54	6,300	6,469 56	6,545	<u>6,270</u> 58	5,971	<u>5,753</u> 60	6,161	6,199 62	5,116	4,271 64	3,016

Capture studies: Fe, Ni, Zn, and Se

Motivations:

- Study of the weak s-process component (nucleosynthesis up to A \sim 90)
- Contribution of massive stars (core He-burning phase) to the s-process nucleosynthesis.
- s-process efficiency due to bottleneck cross sections (Example: ⁶²Ni)

i 1.2 i 1.2 i 1.2 0.8 0.6

mass number

100

n TOF-Ph2

60

50

 62 Ni(n, γ) MACS @ 30 keV relative to 12.3 mb: 22.6

In addition:

Fe and Ni are the most important structural materials for nuclear technologies. Results of previous measurements at n_TOF show that capture rates for light and intermediate-mass isotopes need to be revised.

Capture studies: Fe, Ni, Zn, and Se

The ⁷⁹Se case

• s-process branching: neutron density & temperature conditions for the weak component.

• t_{1/2} < 6.5 x 10⁴ yr

Capture studies: Fe, Ni, Zn, and Se

- Setup: C₆D₆ in EAR-1
- All samples are stable(*) and non-hazardous
- Metal samples preferable (oxides acceptable)

(*) except ⁷⁹Se

Capture studies: A ≈ 150

Capture studies: actinides

Neutron cross section measurements for nuclear waste transmutation and advanced nuclear technologies

^{241,243} Am	The most important neutron poison in the fuels proposed for transmutation scenarios. Build up of Cm isotopes.
239,240,242PU	(n,γ) and (n,f) with active canning. Build up of Am and Cm isotopes.
²⁴⁵ Cm	No data available.
235,238	Improvement of standard cross sections.
²³² Th, ^{233,234} U ^{231,233} Pa	Th/U advanced nuclear fuels. ²³³ U fission with active canning.

All measurements can be done in EAR-1 (except ²⁴¹Am and ²³³Pa)

Capture studies: actual TAC setup

Capture studies: actual TAC setup

Capture studies: active canning for simultaneous (n,γ) & (n,f) measurements

<< back

Measurement of capture cross sections of fissile materials (veto) and measurement of the $(n,\gamma)/(n,f)$ ratio.

Fission studies

Fission studies absolute ²³⁵U(n,f) cross section from (n,p) scattering

capture mode (2 mm Ø)
30°
250 μg/cm²
20 mm
250 mm

(n,p) larger or comparable up to 100 MeV

Fission studies FF distributions in vibrational resonances

Principles:

- Time-tag detector for the "start" signal
- Masses (kinetic energies) of FF from position-sensitive detectors (MICROMEGAS or semiconductors)

Fission studies cross sections with PPAC detectors: present setup

Measurements:

- ²³¹Pa(n,f)
- Fission fragments angular distributions (45° tilted targets) for ²³²Th, ²³⁸U and other low-activity actinides

EAR-2 boost:

- measurements of ^{241,243}Am (in class-A lab)
- measurements of ²⁴¹Pu and ²⁴⁴Cm (in class-A lab)

n TOF-Ph2

Fission studies with twin ionization chamber

Twin ionization detector with measurement of both FF (PPAC principle)

Measurements:

• FF yields: mass & charge

• Test measurement with ²³⁵U then measurements of other MA

n_TOF-Ph2

(n,p), (n,α) & (n,lcp) measurements

1. CIC: compensated ion chamber already tested at n_TOF

For n_TOF-Ph2:

• four chambers in the same volume for multi-sample measurements

Measurements:

- ¹⁴⁷Sm(n, α) (tune up experiment)
- ⁶LiF target for calibration

EAR-2 boost:

- approx 100 times the ORELA count rate expected
- ⁶⁷Zn and ⁹⁹Ru (n, α) measurements

n_TOF-Ph2

(n,p), (n,α) & (n,lcp) measurements

2. MICROMEGAS

already used for measurements of nuclear recoils at n_TOF

For n_TOF-Ph2:

converter replaced by sample

 expected count rate: 1 reaction/pulse (σ=200 mb, Ø=5cm, 1µm thick)

<< back

n TOF-Ph2

(n,p), (n, α) & (n,lcp) measurements

3. Scattering chambers with ΔE -E or ΔE - ΔE -E telescopes

Setup: in parallel with fission detectors

- ✓ production cross sections $\sigma(E_n)$ for (n,xc)
- ✓ c = p, α, d
- \checkmark differential cross sections d σ /d Ω , d σ /dE

Measurements:

- ⁵⁶Fe and ²⁰⁸Pb (tune up experiment)
- AI, V, Cr, Zr, Th, and ²³⁸U
- a few x 10¹⁸ protons/sample in fission mode

n_TOF-Ph2

Neutron scattering reactions

Alternatively, interaction of two neutrons in the final state of a nuclear reaction. Examples of such reactions are:

 $\blacksquare \pi^+ + {}^2H \rightarrow n + n + \gamma$

■ n + ${}^{2}H \rightarrow$ n + n + p

T(n) (MeV)

Neutron incident energy 30 – 75 MeV in 2.5 MeV bins

Kiematic locus of the $n + {}^{2}H \rightarrow n + p + n$ reaction for: $E_{n} = 50 \text{ MeV}$ $\Theta_{n} = 20^{\circ}, \Phi_{n} = 0^{\circ}$ $\Theta_{n} = 50^{\circ}, \Phi_{n} = 180^{\circ}$

n TOF-Ph2

<< back

²³²Th(n,γ): n_TOF & GELINA

Source: L Leal, IAEA CRP meeting, December 2004

²³⁷Np(n,γ) at LANSCE

Source: J Ullman, n_BANT workshop, CERN, March 2005

²³⁷Np(n,γ) at LANSCE

Source: J Ullman, n_BANT workshop, CERN, March 2005
²³⁷Np(n,γ) at n_TOF

www.cern.ch/n_TOF

< back

The n_TOF Collaboration

Parallel Plate Avalache Counters

(PPACs)

coincidence with T1

•20x20 cm²
•Isobutane gas 7 mbar
•HV 500-600 V
•3 mm between electrodes
•1 anode (a few ns signal width)
•Electrode thickness: 1.5 μm (Mylar+Al)
•Deposit thickness : 100-300 μg/cm²
•Backing thickness : 0.1 μm (Al)
: 1.5 μm (Mylar)
•Fission event identification: T2 in

IN2P3 (IPN Orsay)

position-sensitive!

alberto.mengoni@cern.ch