UNCLASSIFIED

Q Values in ENDF

D.A. Brown

This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, C A 94551-0808

UNCLASSIFIED

Outline

- Q value interpretation not unique when dealing with isomers
- Example of different interpretations in ENDF/B-VII $\beta 2$, JENDL-3.3's ${ }^{242 \mathrm{~m} A m}$
- Consensus from discussions in previous meeting
- What needs to be changed to reflect this consensus

What Q values for isomers?

QM	Mass-difference Q value $(\mathrm{eV}):$ defined as the mass of the target and projectile minus the mass of the residual nucleus in the ground state and masses of all other reaction products; that is, for $\mathrm{a}+\mathrm{A} \rightarrow \mathrm{b}+\mathrm{c}+\ldots . \mathrm{B}, \mathrm{QM}=\left[\left(\mathrm{m}_{\mathrm{a}}+\mathrm{m}_{\mathrm{A}}\right)-\right.$ $\left.\left(\mathrm{m}_{\mathrm{b}}+\mathrm{m}_{\mathrm{c}}+\ldots+\mathrm{m}_{\mathrm{B}}\right)\right]\left(9.315016 \times 10^{8}\right)$ if the masses are in amu. $($ See paragraph 3.3.2).
QI	Reaction Q value for the (lowest energy) state defined by the given MT value in a simple two-body reaction or a breakup reaction. Defined as QM for the ground state of the residual nucleus (or intermediate system before breakup) minus the energy of the excited level in this system. Use QI=QM for reactions with no intermediate
states in the residual nucleus and without complex breakup	
$(\mathrm{LR}=0)$. (See paragraph 3.3.2.)	

Interpretation was not unique

Reaction	Target	Library	NuDat Values			ENDF File			
			Q Value (MeV)	Ethreshold (MeV)	Elevel (MeV)	QM (MeV)	$\begin{aligned} & \text { QI } \\ & (\mathrm{MeV}) \end{aligned}$	Ethreshold (MeV)	$\begin{aligned} & \text { ELIS } \\ & (\mathrm{MeV}) \end{aligned}$
(n, n ')	242Am	ENDF/B-VII			0	0	-0.041	0.042838	0
$\mathrm{MT}=51$		JENDL-3.3			0	0	-0.041	0.042838	0
($\mathrm{n}, 2 \mathrm{n}$)	242Am	ENDF/B-VII	-5.53764	5.560523	0	-5.538	-5.538	5.560688	0
$\mathrm{MT}=16$		JENDL-3.3			0	-5.539	-5.539	5.56208	0
$(\mathrm{n}, \mathrm{n}$ ')	242mAm	ENDF/B-VII			0.0486	0.0486	0.0486	$1.00 \mathrm{E}-11$	0.0486
MT=51		JENDL-3.3			0.0486	0.0486	0.0486	$1.00 \mathrm{E}-11$	0.0486
($\mathrm{n}, 2 \mathrm{n}$)	242mAm	ENDF/B-VII	-5.48904		0.0486	-5.49	-5.49	$5.51 \mathrm{E}+00$	0.0486
$\mathrm{MT}=16$		JENDL-3.3			0.0486	-5.539	-5.539	$5.56 \mathrm{E}+00$	0.0486

- JENDL includes $E_{\text {level }}$ in Q for ${ }^{242 m A m(n, 2 n), ~}$ ENDF/B-VII doesn't
- Both include $E_{\text {level }}$ in Q's for (n, n ') MT=51
- Need to clarify point in ENDF-102

Consensus resolution from last meeting

QM	Mass-difference Q value (eV) : defined as the target and projectile masses minus the mass of the residual nucleus and masses of all other reaction products; that is, for $\mathrm{a}+\mathrm{A} \rightarrow$ $\mathrm{b}+\mathrm{c}+\ldots+\mathrm{B}, \mathrm{QM}=\left[\left(\mathrm{m}_{\mathrm{a}}+\mathrm{m}_{\mathrm{A}}\right)-\left(\mathrm{m}_{\mathrm{b}}+\mathrm{m}_{\mathrm{c}}+\ldots+\mathrm{m}_{\mathrm{B}}\right)\right] \times(\mathrm{amu} / \mathrm{eV})$ if the masses are in amu. (See paragraph 3.3.2).
QI	Reaction Q value for the (lowest energy) state defined by the given MT value in a simple two-body reaction or a breakup reaction. Defined as QM of the residual nucleus (or intermediate system before breakup) minus the energy of the
excited level in this system. Use QI=QM for reactions with no intermediate states in the residual nucleus and without complex breakup $(\mathrm{LR}=0) . ~(S e e ~ p a r a g r a p h ~ 3.3 .2) ~$.	

Summary:
 QM uses ground state masses + excitation, Ql uses ground state masses

What needs to be changed...

- Q value wording fix is insidious since used everywhere...
- Found 3 sections (so far) that need wording fix: MF = 3, 9, 10
- Made fixes to these sections in the ENDF manual at previous meeting
- Need to be double checked
- Changes need to be voted on

