LA-UR-06-7894

Nuclear Data Experiments at LANSCE: Highlights 2006

Robert C. Haight Los Alamos National Laboratory

Cross Section Evaluation Working Group Meeting US Nuclear Data Program Meeting Brookhaven National Laboratory November 6-9, 2006

Nuclear data measurements at LANSCE are made with several instruments

LSDS

DANCE (n,y)

N,Z (n,charged particle)

Fission

Nuclear data experiments at LANSCE use neutrons at the Lujan Center, Target 2 and Target 4

GEANIE (n,xγ)

Recent & Planned GEANIE Neutron-Induced Gamma-Ray Cross Section Measurements at LANSCE/WNR

 $\sim 1 \text{ MeV} \le E_n \le 200 \text{ MeV}$

- 103 Rh(n,x γ), 169 Tm, 203,205 Tl levels, isomers under analysis
- ${}^{48}\text{Ti}(n,x\gamma)$ dissertation 2005 D. Dashdorj (NCSU/LLNL)
- 150 Sm(n,n' γ) pre-equilibrium analysis continuing
- ¹⁸⁶W, ²³³U(n,2n) data acquired
- ${}^{100}Mo(n,x\gamma), {}^{124}Sn(n,x\gamma), {}^{130}Te(n,x\gamma), {}^{138}Ba(n,x\gamma)$ data acquired
- ^{70,72,74}Ge(n,xγ) data acquired
- ^{nat}Pb and ^{nat}Te for 0vββ decay experiment backgrounds measurements in progress
 Contact:

Planned Samples: ¹³⁶Xe, other Xe and Kr isotopes

Ron Nelson

New GEANIE data significantly improve the ¹⁹³Ir(n,n')^{193m}Ir cross section database

Structure in odd Thallium isotopes

----- G. E. Arenas Peris and P. Federman, Phys. Rev. C 38, 493 (1988)

Half-life corrected excitation function of 408.9 keV

Structure in even Thallium isotopes

 7^+ isomers from the odd proton in the s_{1/2} orbital and the odd neutron in the i_{13/2} orbital

History of the ²⁰²TI 7⁺ isomer half-life

Some conclusions on states in TI-isotopes

- Excited states in ¹⁹⁹⁻²⁰³TI are studied with GEANIE using the ²⁰³TI(n,xgamma) reaction
- Gamma excitation functions are measured from beam-on data
- Half-lives of isomers are determined between beam macropulses
- 1484-keV state is a candidate for the 9/2- isomer in ²⁰³TI; half-life probably in the nanosecond range
- Half-life of the 7+ isomer of ²⁰²TI [592(4) μs in this work vs. 572(7) in the 1989 evaluation]
- Results of life-time measurements in ¹⁹⁹⁻²⁰¹TI in agreement with previous values

FIGARO (n,xn+γ**)**

Present and future experiments at FIGARO/WNR: neutron-emission spectra and v-bar in fission

$$I MeV < E_n < 200 MeV$$

Fission Chamber in beam

- ²³⁹Pu(n,f): E_{fn}, v-bar
 In progress
- ²³⁵U(n,f): E_{fgamma}
 R. Nelson, in progress
- ²³⁷Np(n,f): E_{fn}, v-bar Data being analyzed by CEA

Gamma-ray trigger (HPGe or BaF₂)

^{nat}Ba, ^{nat}Sr, ⁵⁶Fe
 In progress

N,Z = (n,charged particle) cross sections -- studied in two ways

⁶Li(n,t) α measurements at WNR: cross section and angular distribution

- The ⁶Li(n,t)α reaction cross section in the few MeV region has relatively large experimental uncertainties
- Specifically, we are measuring
 - 1) The reaction cross section for $0.1 < E_n < 10$ MeV using a Si detector "sandwich" technique
 - 2) The angular distribution of tritons, to improve the theoretical modeling and to identify the spins and parities of the (unbound) states in the MeV region
- Results will be ready in early 2007

Contacts: Matt Devlin Terry Taddeucci

6 Li(n,t) α cross section measurement with Si detectors: the method

- Si detectors are selected to be thick enough to stop tritons and alphas up to E_n = 25 MeV
- For higher neutron energies both products go forward
- Si detectors obtained from ORTEC, Canberra
- Systematic errors will include angular distribution effects (some of the solid angle is not covered) and downscattering of neutrons in the Si upstream

⁶Li(n,α)³H data at 40m and 7.2 μ s show good separation of reaction from background

N,Z double-differential cross sections are studied with "standard" detector telescopes

⁶Li(n,alpha) preliminary results for differential cross section are very promising

Angular distribution data will aid R-Matrix analysis

We measure hydrogen and helium production cross sections for the Advanced Fuel Cycle Initiative

Plans for future hydrogen and helium production cross sections for the Advanced Fuel Cycle Initiative

1 MeV < En < 100 MeV

- Zr(n,xp) and (n,xα) -- nearly completed
- Mo(n,xp) and (n,x α) -- planned

Goal is to determine, e.g. helium production / dpa for accelerated radiation damage analysis

Previous data are for Iron, Chromium, and Tantalum

Partial data have been taken for Zirconium

DANCE (n,γ)

Detector for Advanced Neutron Capture Experiments - DANCE

neutrons:

- spallation source
- thermal .. 500 keV
- 20 m flight path
- 3 10⁵ n/s/cm²/decade γ-Detector:
- 160 BaF₂ crystals
- 4 different shapes
- R_i=17 cm, R_a=32 cm
- 7 cm ⁶LiH inside

• $\varepsilon_{\gamma} \approx 90 \%$ • $\varepsilon_{casc} \approx 98 \%$

Contacts: John Ullmann Rene Reifarth Bob Rundberg

¹⁴⁷Sm(n,γ), 10 mg

Comparison of preliminary data from a 10 mg ¹⁴⁷Sm sample at DANCE (**black**) and the JENDL-3.3 evaluation (**red**) around the low keV region. The evaluated data could be confirmed over a broad energy range.

> Contact: Paul Koehler (ORNL)

¹⁴⁷Sm(n,γ), 10 mg

Spin-assignment using the "average multiplicity" technique. Provided the nuclear structure is favorable, DANCE is a very powerful tool for this technique – thanks to the high segmentation.

Spin Assignments for ¹⁴⁷Sm + n

<M> and Counts for several ¹⁴⁷Sm resonances

EST. 1943

Spin assignments made for 140 resonances < 1 keV • 34 firm J assignments for previously unassigned

- 8 firm assignments where only tentative assignments
- 14 resonances < 1 keV without firm J
 (9 < 700 eV)
- 6 firm assignments disagree with Sukhoruchkin
- 6 previously firm resonances shown to be doublets

Actual assignments were made using combinations of various multiplicities rather than <M>

Non-statistical effects?

- Distribution of J=3,4 reduced neutron widths
 - Agree with each other
- Disagree with Porter-Thomas (Different conclusion from Gledenov and
- Koehler incorrect spin assignments)
 Combined J=3,4 distribution

En < 350 eV follow Porter-Thomas (v=1)

- 350 < En < 700 eV, not PT (v=2.39)
- Is result statistically significant?

²³⁴U(n,γ) with broadened ENDF resonance parameters

²⁴²Pu(n,γ), 0.7 mg

Sum energy (MeV) deposited in the crystal ball, if (n,γ) dominated

Neutron Capture Cross sections of ²³⁶U and ²³⁴U

Neutron-capture cross sections on U isotope chain are important

Measurements on ²³⁴U

- Q(n,γ) = 5.30 MeV
- 4.0 < Esum < 5.5 MeV, Mult ≥ 3
- •Target: 1.08 mg on 2, 2.5 μm Ti foils
- Normalized to Thermal (100 b) and Barr (absolute)
- Background Subtractions:
 - Target out
 - Fission
 - Gamma scattering (20%)
- Integral of 5.16 eV resonance
 - Thermal normalization = 1770 b-eV
 - Barr normalization = 1740 b-eV
 - ENDF/B-6 = 2830 b-eV
 - ENDF/B-7 = 2738 b-eV

Los Alamos NATIONAL LABORATORY EST. 1943

^{234,236}U cross sections: R.S. Rundberg, et al., *to be published*.

²³⁶U(n, γ) and ²³⁴U(n, γ) not well known

- Several measurements of ²³⁶U, but recent measurements above 1 keV differ by factor of 2
- Very few measurements on ²³⁴U, this is first high-resolution measurement

Measurements on ²³⁶U

- Q(n,γ) = 5.13 MeV
- 4.0 < Esum < 5.5 MeV, Mult ≥ 3
- Target: 0.49 mg on 2, 2.5 µm Ti foils
- Normalized to Thermal (5.1 b) and Barr (absolute)
- Background Subtractions:
 - Target out
 - Fission
 - Gamma scattering (20%)
- Integral of 5.45 eV resonance
 - Thermal normalization, Barr normalization, and ENDF/B-6 all agree

²³⁴U(n,γ) Cross Section

²³⁶U(n,y) Cross Section from DANCE

Target: 0.44 mg ²³⁷Np in 6.4 mm diameter (1.4 mg/cm²) Existing data above 1 keV discrepant

PPAC Detector for Capture and $\sigma_{\gamma}/\sigma_{f}$ **Measurements**

Avalanche Counter

FST 1943

Close-up of PPAC showing removable cathode/target assembly

PPAC Assembly with gas lines and signal cables ready for insertion into DANCE center

Fission correction for fissile nuclides

Background from fission gammas can be determined by normalizing ²³⁵U spectrum
 Los Alamos

Test measurements with a fission-tagging detector

- Study:
 - Fission-to-capture ratios ("alpha")
 - Gamma emission following fission
- "Proof-of-principle" experiment used "thin" ²³⁵U deposit on silicon solar cell
 - (T. Ethvignot, et al.)

Present: Thin gas fission chamber -- PPAC
 Los Alamos
 NATIONAL LABORATORY

PPAC Detector for Capture and σ_{v}/σ_{f} **Measurements**

- Target: 460 μg ²³⁵U(99.89%) in 0.7 cm deposit (1.2 mg/cm²) electrodeposited on metalized mylar(flashed with 0.25 μg Ti on deposit side, 0.10 μg on other side)
- (n, γ) data has 5.5 < Esum(MeV) < 7.5, Multiplicity \ge 4
- PPAC fission tag has 78% efficiency
- (n, γ) corrected for fission by subtracting 0.22 X fission spectrum
- Approximate normalization to ENDF/B-VI resonances

Analysis of DANCE Data is in Progress on Many Nuclides

^{94,95}Mo (S. Sheets, NC State Univ.)
¹⁴³Nd, ¹⁴⁹Sm (P. Koehler, ORNL)
^{152,154,157,160}Gd (W. Parker, Livermore)
^{151,153}Eu (U. Agvanluvsaan, Livermore)
¹⁵¹Sm (R. Reifarth, Los Alamos)
^{203,205}TI (A. Couture, Los Alamos)
²³⁵U PPAC (T. Bredeweg, M. Jandel, Los Alamos)
^{240,242}Pu (A Couture, R. Reifarth, Los Alamos)
^{241,243}Am (T. Bredeweg, M. Jandel, Los Alamos)
^{242m}Am PPAC (R. Macri, Livermore, M. Jandel, Los Alamos)

Fission Cross Sections

Discrepancies in ²³⁷Np(n,f) exist in "fast" region between major nuclear data libraries

²³⁷Np(n,f) is the first completed measurement

covariances (with T-16)

Fredrik Tovesson

Parallel-plate fission ionization chamber and gridded ion chamber

Parallel plate ionization chamber (PPIC)

- Commonly used for flux monitoring
- Detects on fission fragment per even
- Holds up to 4 samples

Double gridded ionization chamber

- On loan from IRMM, Geel.
- Detects both fission fragments, improving alpha-separation for highly active targets

LANSCE fission measurements in the future

- Low energy (Lujan) data have been collected/calibrated for
 - U233, Pu239, Pu240, Pu242 thermal < E_n < 200 keV
- High energy (WNR) data will be taken this run cycle on U233, Pu239, Pu240 and Pu242 100 keV < E_n < 200 MeV
- Complete analyses by summer `07
- Actinides of interest for future fission measurements:
 Am241, Am242, Am242m, Cm242, Cm243, Np238, Pu238

Fission Cross Sections On Very Small Samples

A Lead Slowing-Down Spectrometer is under development, driven by 800 MeV protons from the PSR

Neutron trajectories following the interaction of 1 proton with the tungsten target in the lead cube

Contact: Bob Haight

With the LSDS, we measured the neutron-induced fission cross section on ²³⁹Pu with sub- μ g samples

- Sample size of 9.87 ng can be studied
- Good results up to 100 keV
- Still plan to measure fission cross section of ^{235m}U (26 minutes) after solving chemistry challenge

First excited (isomeric) state of ²³⁵U is produced in decay of ²³⁹Pu

- 235mU
 - 26 min half-life
 - 73eV
 - Decays by internal conversion
 - 99% of 239Pu decays populate $_{^{235m}U}$
 - 5 gm of Pu will produce 10ng of ^{235m}U
- Fast extraction of ^{235m}U will be required
- To measure this small cross section, it is necessary to increase the neutron flux by using a lead-slowing down spectrometer (LSDS)

Developments at LANSCE

- Technical issues
 - High power amplifier tube availability and quality (Burle 7835) → problem solved for the present
 - LANSCE-Refurbishment ("LANSCE-R")
- Funding problems (LANL contract → \$175M shortfall for this FY)
 → less running for LANSCE
 - Electricity costs
- Personnel changes
 - Paul Lisowski (former LANSCE Director) to Washington to head GNEP
 - Kurt Schoenberg acting LANSCE Director
- Reorganization of Lab and LANSCE

We address the needs of LANSCE sponsors

- National Nuclear Security Administration
 - Program in radchem cross section measurements
 - Neutron capture cross sections on radioactive targets (DANCE)
 - Cross section measurements on high-order (n,2n), (n,xn) reactions (GEANIE)
 - Program in neutron-induced fission measurements
 - Fission product distributions (GEANIE)
 - Energy output in fission: neutron and γ -ray spectra (FIGARO)
 - Nuclear properties of fission products and isomers (GEANIE and FIGARO)
- Office of Nuclear Energy
 - Measurements in support of the AFCI program include:
 - Capture and fission cross section on actinides
 - Gas production: (n,p), (n, α) reactions in structural materials
- Office of Science
 - Support of SNS in understanding pulsed radiation effects on liquid mercury targets
 - Fundamental physics experiments and nuclear data
- National Resource
 - Nuclear science User Facility for defense, basic and applied research
 - Industrial testing of semiconductor devices in neutron beams
 - University research in nuclear science

The LANSCE program in nuclear data involves many laboratories

- GEANIE LANL, LLNL, INL, ORNL, Bruyères-le-Châtel, NC State
- FIGARO LANL, Bruyères-le-Châtel
- N,Z LANL, Ohio U
- DANCE LANL, LLNL, ORNL, INL, Colorado School of Mines, FZK Karlsruhe
- LSDS LANL, LLNL, Bruyères-le-Châtel, RPI
- Fission LANL, IRMM, LLNL, INL
- Others MIT, Kentucky, Kyushu, Harvard,...

