Recent Activities & Initiatives in the ORNL Nuclear Data Program

thread States Department of Energy

Oak Ridge National Laboratoi

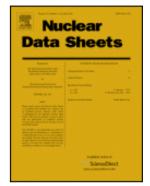
s by Martin Marketta Energy Systems, Inc.

Caroline D. Nesaraja, Michael S. Smith **ORNL** Physics Division

Activities

Nuclear Structure Data

Actinide A-chain Evaluations


Persective Auchier Chart for Auen stool of Conclusions

Nuclear Astrophysics Data

• Evaluation of reactions critical for stellar explosion studies (couple research and data activities)

Activities are portions of PhD theses of 5 graduate students

• Improve and expand functionality of the Computational Infrastructure for Nuclear Astrophysics

Nuclear Structure Data

EVALUATIONS

Actinides

Responsibility: Actinide Evaluations A=241 – 249

A=208 to be submitted by mid- November (Murray Martin)

A=201 reviewed (Murray Martin)

A=245 preliminary work done and expected to complete in March 2007 (Murray Martin^{*})

Light Nuclei

A=58 in progress (Caroline Nesaraja^{*})

Levels in ¹⁹Ne, ³¹S, ¹⁸F (Caroline Nesaraja)

(see Nuclear Astrophysics Data below for details)

TRAINING

 Murray Martin working closely with Caroline Nesaraja on evaluation techniques of heavy nuclei (includes A= 245, A = 58)

243Cf 10.7 M	244Cf 19.4 M	245Cf 45.0 M	246Cf 35.7 H	247Cf 3.11 H	248Cf 333.5 D	249Cf 351 Y	250 13.0
e	α	e			α	α	α
242Bk 7.0 M	243Bk 4.5 H	244Bk 4.35 H	245Bk 4.94 D	246Bk 1.80 D	247Bk 1380 Y	248Bk >9 Y	2491 330
e					α		β-
241Cm 32.8 D	242Cm 162.8 D	243Cm 29.1 Y	244Cm 18.1 Y	245Cm 8500 Υ	246Cm 4760 Y	247Ст 1.56E+7 Ү	2480 3.48E-
ŧ					¢,	α	¢.
240Am 50.8 H	241Am 432.6 Y	242Am 16.02 H	243Am 7370 Y	244Am 10.1 H	245Am 2.05 H	246Am 39 M	247 <i>8</i> 23.0
£			α		β-	β-	β-
239Pu 24110 Y	240Pu 6561 Y	241Pu 14.290 Y	242Pu 3.75E+5 Y	243Pu 4.956 H	244Pu 8.00E+7 У	245Pu 10.5 H	2461 10.84
α			α		CL.		β-

19Ne Motivation: Knowledge of proton induced reactions on ¹⁸F is important for novae and X-ray burst

Publication: Paper has been submitted to Phys. Rev.C

Nuclear structure properties of astrophysical importance for ¹⁹Ne above the proton threshold energy

> C. D. Nesaraja^{1,2}, N. Shu^{1,3}, D. W. Bardayan¹, J. C. Blackmon¹, Y.S. Chen³, R. L. Kozub⁴, P. D. Parker⁵, M. S. Smith¹

Portion of Ph.D. thesis for N. Shu, CIAE, Beijing , 2004 & K.Chae, University of Tennessee Knoxville, 2006

Evaluation of **30 levels** (E_x=6.411 -8.100 MeV)

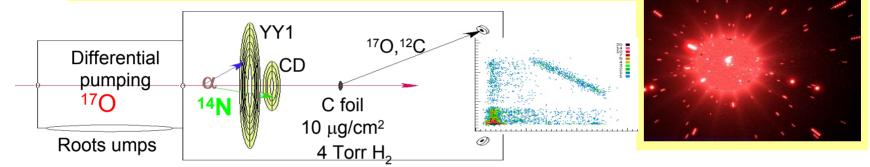
- new level found at E_x=7.420 MeV via ¹⁸F(p,p)¹⁸F
- new values for Γ_p widths from spectroscopic measurements in ${}^{18}F(d,p){}^{19}F$
- new upper limit for Γ_p widths from interference effects among the $J^{\pi}=3/2^+$ from ${}^{18}F(p,\alpha){}^{15}O$ measurements
- preparing into ENSDF format and will be submitted to TUNL & XUNDL

31S Motivation: ${}^{30}P(p,\gamma){}^{31}S$ reaction plays a crucial role in the synthesis of heavier nuclear species in nova outburst on ONe White dwarfs

Publication: Paper has been submitted to Phys. Rev.C

Astrophysically important ³¹S states studied with the ${}^{32}S(p,d){}^{31}S$ reaction

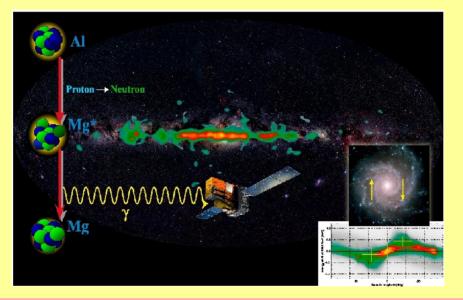
Z. Ma,¹ D. W. Bardayan,² J. C. Blackmon,² R. P. Fitzgerald,³ M. W. Guidry,¹ W. R. Hix,² K. L. Jones,⁴ R. L. Kozub,⁵ R. J. Livesay,⁶ M. S. Smith,² J. S. Thomas,⁴ and D. W. Visser³


Portion of Ph.D. thesis for Z. Ma, University of Tennessee Knoxville, 2006

Evaluation of **44 levels** (4.085-10.577 MeV)

- 5 new states were observed from ³²S(p,d)³¹S measurement
- new values for $\Gamma_{\mathbf{p}}$ widths from spectroscopic measurements
- spin and parity were determined or constrained by the DWBA analysis of the angular distributions
- preparing into ENSDF format and will be submitted to XUNDL

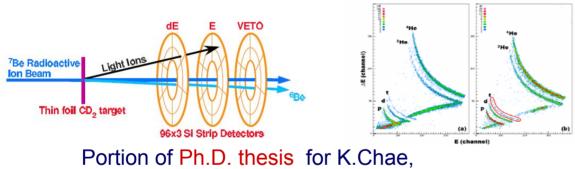
18 Motivation: Structure properties of ¹⁸F are important to determine the ${}^{17}O(p,\gamma){}^{18}F$ and ${}^{17}O(p,\alpha){}^{14}N$ rates in Red Giant Stars



Portion of Ph.D. thesis for B. Moazen, University of Tennessee Knoxville

- a novel technique using a hydrogen gas target and the ¹⁷O beam from HRIBF
- this approach allows a high sensitivity for narrow resonances to be measured at resonance 183 keV via ${}^{17}O(p,\alpha){}^{14}N \omega\gamma = 1.70\pm0.9$ stat ±0.12 sys
- resolved serious discrepancy in literature
- status level assessments in progress

²⁶Si

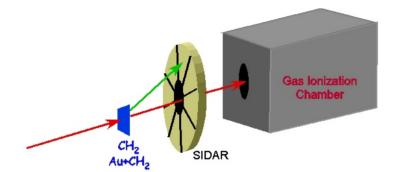

Motivation: ${}^{25}AI(p,\gamma){}^{26}Si$ reaction in novae affects the interpretation of Galactic ${}^{26}AI$ observations

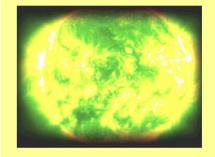
- a crucial 3⁺ state at E_x=5.914 MeV observed via the ²⁸Si(p,t)²⁶Si measurement

- resolve serious discrepancy in literature
- status level assessments in progress (Dan Bardayan)

⁶Be is needed for the ³He(³He,2p)⁴He reaction which is important for the destruction of ³He in stars and strongly affects the calculated neutrino luminosity from the sun

University of Tennessee Knoxville, 2006




A search for the missing ⁶Be levels was performed via the d(⁷Be,t)⁶Be reaction with radioactive ⁷Be beam from the HRIBF
Upper limits were set on the cross section to populate such levels

analysis complete, paper being drafted

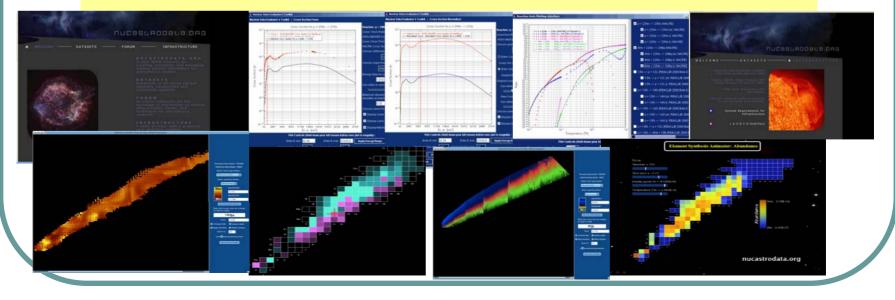
8**B**

Motivation: To search for unobserved states in ⁸B which will influence the extrapolation of the ⁷Be(p,γ)⁸B astrophysical S factor to stellar energies, and which is crucial for interpreting observations of the solar neutrino flux

Portion of Ph.D. thesis for R.J. Livesay, Colorado School of Mines

• A search for the **B levels** was performed via the elastic and inelastic ⁷Be+ p scattering

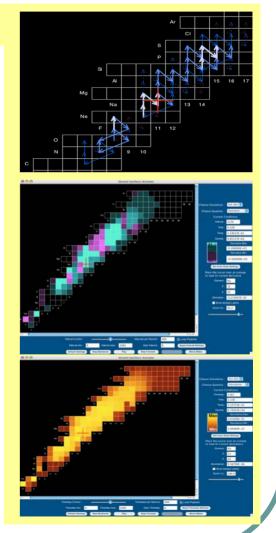
- measurement done with radioactive ⁷Be beam from the HRIBF
- status data analysis in progress


Computational Infrastructure for Nuclear Astrophysics

Overview

Computational Infrastructure for Nuclear Astrophysics is available free online at nucastrodata.org

With a few mouse clicks, one can


- Rapidly incorporate nuclear results into element burning models
- Run models and visualize results
- Share results and comments with online community

Computational Infrastructure for Nuclear Astrophysics

New Features since last USNDP meeting

- Rate locater quickly generate list of all rates for a given reaction and plots them out
- Improved control over reaction rates fitting routines
- Reaction flux visualization (static & animated)
- Multiple zone post-processing element synthesis calculations
- nova and X-ray bursts simulations can be run
- movies can be created from one's own simulation code
- faster animation rendering & export
- quick comparison of simulations using different
 rate libraries

Future Work

Evaluations:

- Actinide A-chain A=241 249
- Reactions critical for Stellar Explosions studies and compilation & evaluation of the light nuclei

Computational Infrastructure for Nuclear Astrophysics:

- Add new evaluation tools, processing techniques, and visualization tools
- rates uncertainty propagation cross sections --> reaction
 --> abundance predictions