Astrophysics Task Force

Caroline Nesaraja, Michael Smith

ORNL Physics Division

Numerous USNDP institutions are pursuing projects that are beneficial for studies in nuclear astrophysics

These activities include work on both nuclear reactions & nuclear structure

Recent Activities include

- Compilations & Evaluations (ANL, McMaster, ORNL)
- Computational Infrastructure for Nuclear Astrophysics (ORNL)
- Nuclear Theory (LANL)

ANL (F. Kondev)

Structure information for states above long-lived isomer ¹⁸⁶Re

McMaster (A. Chen)

 Evaluation closely coupled to experimental program of McMaster –TRIUMF ²⁶Al(p,γ)²⁷Si & ⁴⁰Ca(α,γ)⁴⁴Ti

ORNL (C. Nesaraja)

• Focus on reactions involving radioactive nuclei important for stellar explosions - coupled to HRIBF measurements ${}^{18}F(p,\alpha){}^{15}O$ & ${}^{18}F(p,\gamma){}^{19}Ne, \, {}^{30}P(p,\gamma){}^{31}S$, ${}^{17}O(p,\gamma){}^{18}F$ & ${}^{17}O(p,\alpha){}^{14}N$, & ${}^{25}AI(p,\gamma){}^{26}Si$

ANL

Important for determining accuracy of the ¹⁸⁷Re/¹⁸⁷Os cosmo chronometer that can be used for dating r-process events

F. Kondev

McMaster

Incorporated new data from recent measurement of key resonance for the reaction rate at TRIUMF-ISAC using DRAGON (Ruiz et al. PRL (2006))

11

A.Chen

McMaster

Important in production of the observed gamma emitter ⁴⁴Ti in supernova explosions (E_{γ} = 1.16 MeV)

Data analysis & rate evaluation in progress (Ph.D. thesis, C. Ouellet, McMaster University)

 $E-\Delta E$ spectrum from ionization Chamber (energy in a.u.)

ORNL Focus on structure & reactions involving radioactive nuclei important for stellar explosions

Plays crucial role in the synthesis of heavier (A>30) nuclear species in nova outburst on ONe White dwarfs

A total of 26 levels observed
5 observed levels not previously reported
J ^π determined or constrained for the first time
Evaluated 44 levels

E _# (keV) re-evaluated	Observed in this work	l.	•ر	C^2S	$E_{\theta}(keV)$ ³¹ P mirror
4085 ± 2	4085 ± 2	2	5/2*	0.77	4190
4204 = 1	2100 4 2		(1/2 - 7/2)*	0.05	4121
4525 + 8	3140 2.9	<i>a</i>	3/21	0.15	4671
4564 ± 0.3			7/2*		
4711 ± 2	4707 ± 3	2	5/2+	0.40	4783
4906 ± 7					
4976 ± 4	4288 ± 8		3/2-		5013
5027 ± 5					
5156 ± 3	5155 ± 5	0	1/2+	0.11	5256
5301 ± 0.3	5331 ± 5		9/2*		3343
5408 ± 9					
5440 ± 11	1.007 + 10		2.04	17.50	*****
5670 + 4	2407 1 10	*	4/2*	0.10	3007
5770 + 3	5781 + 5	2	5.007	0.17	\$802
5826 ± 10		-	-97# .	0.00	
5890 ± 4	5959 ± 10 4	2	(3/2,5/2)+	0.15	
5978 ± 0.8	5959 ± 10 *	2	(9/2*)		
6160.2 ± 0.7			5/2-		6399
6263 ± 3	6267 ± 5	0	1/2+	0.12	6337
6279.5 ± 2			3/2*		6381
6350 ± 11			5/2*		6461
6376.9 ± 0.5			9/2-		6501
6390.8 ± 0.5	6411 ± 9		11/2*		6454
6544 ± 9	6546 ± 15		5/2-		6594
6593 ± 15			3/2*		6610
0636.2 ± 1.5			9/2-		6703
6712 ± 11			(3/2 - 7/2)		
6748 ± 10			(3/2 - 1/2)		
6833.4 ± 0.3	6848 ± 9 ^b		11/2=		6825
6870 + 10	0949 + 0.9		(9.00 × (91)		7080
0070 1 10	0949 1 9		(0/# 10/#)		7080
6921 ± 25			5/2*		6032
6969 II 5			1/2+		
7006 ± 5			1/2+		
7038 ± 4	7044 ± 6	2	5/2+	0.79	7158 ^d
7112 ± 25			$(1/2, 3/2)^{-}$		7214
7156 ± 4			$(3/2, 5/2)^+$		
7190 ± 13					
7303 ± 0.7			11/91		
TAGE			11/2		
7440 1 20					
7511 ± 5	7510 ± 6				
7600 ± 30					
7660 ± 30					
7726 ± 3	7728 ± 4	0+2			
7768 ± 25					
7850 ± 25					
7011 + 5	7012 + 5		1/2+	0.06	
MOOT L OF	0040 1 0 0	0.0	11/2 10/0 1/0 1/00/4	0.00	
7985 ± 25	8049 ± 6 °	0+2	$(1/2, 3/2, 5/2)^{+}$		
8082 ± 25	8049 ± 6 °	0+2	$(1/2, 3/2, 5/2)^{+}$		
8174 ± 11	8171 ± 12				
8362 ± 25					
8461 ± 0.5			$(13/2^{-})$		
8517 ± 13	8517 ± 13	0	1/2+	0.05	
8780 ± 6	8780 ± 6	2	(3/2.5/2)+	0.13	
0154 ± 1.2	0100 ± 0		13/91	0.10	
0007 1 5	0007 + 5		10/4		
9207 ± 5	9207 ± 5		10 10 E 101 I		
9423 ± 7	9423 ± 7	2	$(3/2, 5/2)^+$	0.19	
9606 ± 14	9606 ± 14				
9853 ± 12	9853 ± 12				
10146 ± 1.0			$(13/2^{-})$		
10577 + 19	10577 ± 13		(/- /		

Computational Infrastructure for Nuclear Astrophysics

Expansion of the **Computational Infrastructure for Nuclear Astrophysics** at nucastrodata.org includes rate locater, improved reaction rate fitting routines, reaction flux animation, faster animation rendering & export of movie files and many other features

Nuclear Theory

LANL

Global Calculation of Ground State Axial Asymmetry of Nuclei

PRL 97, 162502 (2006)

PHYSICAL REVIEW LETTERS

week ending 20 OCTOBER 2006

Global Calculations of Ground-State Axial Shape Asymmetry of Nuclei

Peter Möller, 1,* Ragnar Bengtsson,2 B. Gillis Carlsson,2 Peter Olivius,2 and Takatoshi Ichikawa3

First global systematic study of the axial asymmetry of >7000 nuclei

• characteristic γ bands are observed experimentally for many nuclei in region where axial asymmetry is calculated

 for nuclei where axial asymmetry is found, a systematic deviation between calculated and measured masses is removed

• important application for modeling the properties of nuclei involved in the **r process in supernovae**

P.Möller

Nuclear Theory

LANL Direct & Semidirect Capture of Nucleons with Hartree – Fock BCS Theory

LANL

Maxwell-Averaged Capture Cross Section for Sn-132

DSD Contribution to MACS

- Because of small CN capture cross sections on ¹³²Sn, DSD capture becomes in the same order as the Hauser-Feshbach cross sections.
- MACS is increased by the DSD cross section, when kT ≥ 100 keV.
- 23% of MACS is from DSD at kT = 1 MeV.

¹³²Sn β^- -decays with $T_{1/2}$ of 39.7 s. If nucleo-synthesis takes place in a high temperature environment, uncertainty in the DSD calculation may change the r-process scenario.

Kawano et al.