Overview of nuclear data efforts for homeland security: Funding and staffing

Dennis P. McNabb

David A. Brown

• Conferences

Homeland security sessions are becoming common at major conferences

- Journal publications is trending upward
 NIM, Sensors IEEE, Nuclear Physics A, J. Appl. Phys.
- Funding has increased and may begin leveling off Transformational R&D efforts at DHS are funded at \$57 M DOE/NA-22 has been flat for a while ASC program is planning to shift funds into this area
- My vision of the future here is integrated simulations of detection systems

Nuclear engineering, accelerator, and nuclear physics conferences are typically including homeland security

- The examples are numerous CAARI 2006 APS/DNP 2006 SORMA 2006
- Topical areas related to nuclear physics

Improved accelerator technologies (gammas and neutrons) Better detectors Detection techniques Architecture approaches Related science

- Hundreds to thousands of hits depending on search parameters
- My non-scientific analysis of main topics re nuclear data and simulations Delayed γ and n from fission after pulsed interrogation w/ n and γ Delayed γ and n from scattering and capture after pulsed interrogation w/ n Prompt γ from nuclear resonance fluorescence
- The most widely-cited product in this area from USNDP: Nuclear Wallet Cards

Funding has taken off and looks to stabilize

Near-term growth more likely to commercialize recent R&D projects rather than expand basic research

- Some growth will be
 offset by reductions in
 other areas and other
 realities
- 30% growth already
 seen at LLNL in the 2
 years since this
 projection

		Triage and				
	International	Emergency				
	Programs	Response	NA-22	DHS	DHS	Total
Estimated 2005 workforce	5	6	8	21		47
Permanent Staff						
Experimental Nuclear Physics	1	4	3	13		21
Theoretical Nuclear Physics	0	2	0	4		6
Nuclear Chemistry	3		0		7	10
Temporary Staff						
Experimental Nuclear Physics	0		1			1
Theoretical Nuclear Physics	0		0	1		1
Nuclear Chemistry	1		0			1
Post-Docs						
Experimental Nuclear Physics	0		4	3		7
Theoretical Nuclear Physics	0		0			0
Nuclear Chemistry	0		0			0
Estimated workforce needs for next 5 years:	6	8	22	40		83
Permanent Staff						
Experimental Nuclear Physics	1	6	8	20		35
Theoretical Nuclear Physics	0	2	0	6		8
Nuclear Chemistry	2		0		5	7
Temporary Staff						
Experimental Nuclear Physics	1		4			5
Theoretical Nuclear Physics	0		0			0
Nuclear Chemistry	1		0			1
Post-Docs						
Experimental Nuclear Physics	0		10	10		20
Theoretical Nuclear Physics	0		0	4		4
Nuclear Chemistry	1		0		2	3

• Simulation codes which can optimize detection systems will be very

useful for engineering and developing new products This will drive the development of new simulation capability and probably new codes

- Unclear how long it takes for this industry to mature
- Unclear whether or not there will be a enduring need for simulation capability like with reactors, e.g. balancing fuel rods
- Seems clear to me that CSEWG has defined itself in the past as supporting these simulation communities in the past and will do so in the future