

COVARIANCE DATA GENERATION IN THE RESONANCE REGION

Nuclear Data Group Nuclear Science and Technology Division Oak Ridge National Laboratory

L. Leal, H. Derrien, G. Arbanas, N. Larson, and R. Sayer

CSEWG Meeting

November 6 - 8, 2006

TOOLS

- EVALUATION TOOLS: SAMMY
 - Evaluation code used for data and uncertainty evaluations in the resonance region
 - Used also to check the results of data processing codes (average cross sections)
- PROCESSING TOOLS: NJOY/ERRORJ and AMPX/PUFF
 - ERROJ is now part of the NJOY code system
 - PUFF is the ORNL tool for processing covariance data

Covariance Evaluation Procedure

Use the SAMMY code

Retroactive covariance: Obtained when no experimental data exist. Educated guess on "pseudo" experimental data generation;

Direct generation of covariance: Done in the flow of the evaluation;

SAMMY to ENDF

SAMMY generated resonance covariance can be converted into the ENDF format (FILE 32 SECTION 2151)

LCOMP=1 existing ENDF format

LCOMP=2 new compact format. There are still some issues with this option. Nancy Larson will talk about that !!

Covariance Evaluation Procedure (cont'd) 1. Memory Allocation for SAMMY Dominant contribution to the SAMMY array (sensitivity matrix): Number of resonances N_{res} Number parameters per resonance N_{par} Number of experimental data points N_{dat} (auxiliary grid) **SAMMY requested memory size:** $Mem = (N_{res} \times N_{par} \times N_{dat}) \times 8 \text{ bytes}$ **SAMMY computation of the Resonance Parameter Covariance** Matrix (RPCM) requires a memory size of approximately $2 \times Mem$

Covariance Evaluations

3. Evaluations

a) Resonance covariance evaluations have been done for ²³³U, ²³⁵U, ²³⁸U, ²³⁹Pu, and ²³²Th

b) LCOMP=1 format used

c) High energy covariance provided by LANL for ²³⁵U, ²³⁸U and ²³⁹Pu were merged with ORNL resonance evaluations

d) Evaluation for ²³²Th done under IAEA/CRP

e) New cross section and covariance evaluation for ²³⁹Pu

f) Resolved and unresolved covariance for ²³³U (No high energy covariance)

Memory allocation: 8 bytes/word ASCII file allocation: 11 bytes/word

²³³U Covariance Matrix

Full covariance has been generated in the energy range from 10⁻⁵ to 600 eV (RR) and from 600 to 40 keV (UR) **SAMMY memory size estimation** No. of resonances = 770No. of varied parameters per resonance = 5 No. of data points = 20,000Mem= $(770 \times 5 \times 20,000) \times 8$ Memory needed = 2 × Mem ~ 1.3 Gbytes

Resonance Covariance for ²³³U

Space storage needed for ²³³U covariance

 $N_{res} = 770$

N_{par}=5

 $N=N_{res} \times N_{par}$

 $N_s = (N^2/2 + N/2) \times 14^*$

N_s ~ 100 Mbytes

Clearly LCOMP=1 is not ideal !!

*some overhead added to the ASCII/bytes conversion

ERRORJ Processed Covariance (Total Cross Section)

ERRORJ Processed Covariance (Capture Cross Section)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

JT-BATTEL

ERRORJ Processed Covariance (Fission Cross Section)

²³⁵U Covariance Matrix

Full covariance has been generated in the energy range from 10⁻⁵ to 2250 eV (RR) and from 600 to 25 keV (UR) **SAMMY memory size estimation** No. of resonances = 3193No. of varied parameters per resonance = 5 No. of data points = 80,000Mem= $(3193 \times 5 \times 80,000) \times 8$ Memory needed = $2 \times Mem \sim 25$ Gbytes

Resonance Covariance for ²³⁵U

Space storage needed for ²³⁵U covariance

N_{res}=3193

N_{par}=5

 $N=N_{res} \times N_{par}$

 $N_s = (N^2/2 + N/2) \times 14$

N_s ~ 1.8 Gbytes

Clearly LCOMP=1 is not ideal !!

Processing of ²³⁵U Covariance with ERRORJ

 The dimension needed for ERRORJ to process ²³⁵U covariance is equivalent to 15 Gbytes memory

• CPU time ~ 2.5 days

ERRORJ Processed Covariance (Total Cross Section)

ERRORJ Processed Covariance (Capture Cross Section)

ERRORJ Processed Covariance (Fission Cross Section)

²³⁸U Covariance Matrix

Full covariance has been generated in the energy range from 10⁻⁵ eV to 20 keV (RR)

SAMMY memory size estimation No. of resonances = 3343No. of varied parameters per resonance = 3 No. of data points = 20,000Mem= $(3343 \times 3 \times 20,000) \times 8$ Memory needed = $2 \times Mem \sim 5$ Gbytes

Resonance Covariance for ²³⁸U

Space storage needed for ²³⁸U covariance

N_{res}=3343

N_{par}=3

 $N=N_{res} \times N_{par}$

 $N_s = (N^2/2 + N/2) \times 14$

N_s ~ 700 Mbytes

Clearly LCOMP=1 is not a ideal !!

ERRORJ Processed Covariance (Total Cross Section)

ERRORJ Processed Covariance (Capture Cross Section)

²³⁹Pu Covariance Matrix

Full covariance has been generated in the energy range from 10⁻⁵ eV to 2.5 keV (RR)

SAMMY memory size estimation No. of resonances = 1045No. of varied parameters per resonance = 5 No. of data points = 20,000Mem= $(1045 \times 5 \times 20,000) \times 8$ Memory needed = $2 \times Mem \sim 1.7$ Gbytes

Resonance Covariance for ²³⁹Pu

Space storage needed for ²³⁹Pu covariance

N_{res}=1045

N_{par}=5

 $N=N_{res} \times N_{par}$

 $N_s = (N^2/2 + N/2) \times 14$

N_s ~ 190 Mbytes

Clearly LCOMP=1 is not ideal !!

ERRORJ Processed Covariance (Total Cross Section)

ERRORJ Processed Covariance (Fission Cross Section)

U. S. DEPARTMENT OF ENERGY

ERRORJ Processed Covariance (Capture Cross Section)

²³²Th Covariance Matrix Evaluation done under IAEA/CRP

Full covariance has been generated in the energy range from 10⁻⁵ eV to 4 keV (RR)

Unresolved Evaluation Done at GEEL !!

SAMMY memory size estimation

No. of resonances = 927

No. of varied parameters per resonance = 3

No. of data points = 20,000

Mem= $(927 \times 3 \times 20,000) \times 8$

Memory needed = 2 × Mem ~ 900 Mbytes

Resonance Covariance for ²³²Th

Space storage needed for ²³²Th covariance

N_{res}=927 N_{par}=3 $N=N_{res} \times N_{par}$ $N_s = (N^2/2 + N/2) \times 14$ N_s ~ 55 Mbytes (LCOMP=1) **Compact formalism used** N_s ~ 800 Kbytes reduction size by a factor of 70 !!

ERRORJ Processed Covariance (Total Cross Section)

ERRORJ Processed Covariance (Capture Cross Section)

Compact format (size reduction estimation)

Isotope	Lcomp=1	Lcomp=2
		(compact)
²³² Th	55 MB	1 MB
233U	100 MB	3 MB
235U	1.8 GB	60 MB
238U	700 MB	8 MB
²³⁹ Pu	190 MB	10 MB

Concluding Remarks

- Resonance covariance data were generated for ²³²Th, ²³³U, ²³⁵U, ²³⁸U, and ²³⁹Pu using SAMMY
- LCOMP=1 option used (clearly not ideal)
- Compact formalism used for ²³²Th (LCOMP=2)
- Note: CPU time for LCOMP=1 and LCOMP=2 ARE THE SAME !!
- PUFF and ERRORJ code used to process the covariance data

