

New evaluation for ⁹⁰Zr

Mike Herman* National Nuclear Data Center Brookhaven National Laboratory

*Email: mwherman@bnl.gov

Brookhaven Science Associates

BNL evaluation capacity

Resonance Region

Fast Neutron Region

Nuclear Reaction Model Code Version 2.19 (Lodi)

⁹⁰Zr evaluation history

RR	URR	Fast
SG23=BROND-2	SG23=BROND-2	SG23=BROND-2
	(background!)	
"	as above but for	default EMPIRE with
	self-shielding only,	dispersive o.m.p.,
	x-sections from EMPIRE	elastic increased
"	66	EMPIRE adjusted to
		exp. data, dispersive
		o.m.p.
Mughabghab	Mughabghab	<u> </u>
	RR SG23=BROND-2 " " Mughabghab	RRURRSG23=BROND-2SG23=BROND-2(background!)(background!)"as above but for self-shielding only, x-sections from EMPIRE""MughabghabMughabghab

Elastic with various o.m.p.

All optical model potentials provide elastic higher than beta2

Total cross sections

Dispersive omp by Capote et al. is the only one that can compete with beta2 for total

NATIONAL LABOR

BNL, November 6-8, 2006

Cross Section (barns)

Elastic cross sections

NNDC

Beta3 elastic considerably higher than in beta2

Inelastic to discrete levels

beta3 and beta2 are about equally good for inelastic scattering to discrete levels.

Due to the CC beta3 tends to be higher than beta2 above 5 MeV

NNDC

CSEWG – 2006 BNL, November 6-8, 2006

(n,2n) cross sections

Mike Herman

NNDC

8

BNL, November 6-8, 2006

NATIONAL LABORATORY

Capture cross sections

9

NNDC

Microscopic level densities require 0.4 factor on the gamma strength function but shape of the cross section is right.

BNL. November 6-8, 2006

⁹⁰Zr evaluation history

Version	RR	URR	Fast
beta2	SG23=BROND-2	SG23=BROND-2	SG23=BROND-2
		(background!)	
"stealth"	"	as above but for	default EMPIRE with
		self-shielding only,	dispersive o.m.p.,
		x-sections from EMPIRE	elastic increased
beta3	"	66	EMPIRE adjusted to
			exp. data, dispersive
			o.m.p.
beta4	Mughabghab	Mughabghab	<u> </u>

b3 or b4, this is a question!

beta3⇔beta4 (n,γ) in RR

beta3⇔beta4 (n,γ) in URR

beta3⇔beta4 elastic in URR

NNDC

BNL, November 6-8, 2006

Evaluation \Leftrightarrow Validation

User detects a problem during validation

Successful validation

Sensitivity analysis on the integral measurement suggests deficiency in the file

New evaluation based on model calculations

Model calculations confirm suggestion

CSEWG – 2006 BNL, November 6-8, 2006

Conclusions

- Sensitivity analysis of the integral experiment might provide useful hint to the evaluators
- New complete evaluation for ⁹⁰Zr in RR, URR and fast region produced promptly due to highly automated evaluation system at BNL
- Better physics better results!
 - Dispersive optical potential
 - Microscopic level densities
- beta3 or beta4 your choice!

