XUNDL Status Report: (Oct. 1, 2004 – Sept. 30, 2005)

B. Singh and J.C. Roediger (McMaster) D.F. Winchell and T.W. Burrows (NNDC, BNL) October 31, 2005 (USNDP-2005 meeting: November 9-11, 2005)

Overview

To provide prompt and convenient electronic access to current publications or preprints in experimental nuclear-structure data (level-scheme information) that are not yet available in the ENSDF database or in NDS.

 ENSDF-style datasets compiled from one paper, or a set of related papers from the same experimental group.

Covering both high- and low-spin papers. Current literature on experimental nuclear structure seems equally divided between highspin and low-spin publications, as judged by regular perusal of web pages of primary nuclear physics journals (PRL, PL-B, PR-C, NP-A, EPJ-A, JP-G)

Overview cont.

Compilation work done primarily at McMaster (~93% contribution overall, ~100% during 2000-05).

The entry of datasets in XUNDL database is coordinated by B. Singh at McMaster, while the organization/management of the database is handled by D.F. Winchell and T.W. Burrows at NNDC, BNL

Requires a consistent level of effort in keeping up-to-date with the published literature, communication with original authors, and participation of undergraduate students

Current Contents of XUNDL

 Since the start in December 1998, 1626 datasets added up to September 30, 2005

 Covers mainly high-spin structures; but since 2003, most low-spin papers have also been compiled.

(It is estimated that the XUNDL database contains data from almost all the high-spin papers published from 1998-2005, and about 50% of the papers published from 1995-97.)

~1100 nuclides: ⁹Be to ²⁸⁸115, spread over ~225 A-chains

 Data from over 1200 primary references published mainly during 1995 – 2005

Work in FY-05

300 datasets compiled since October 1, 2004; which include data from about 100 papers published in 2005 alone.

 15 existing datasets revised/updated based on new papers from previous authors/groups

Most current low-spin papers have also been compiled

 Undergraduate student, Joel Roediger, actively participated in XUNDL work in 2004-2005

 Except for about 20 papers published in journal web pages in the last 3-4 weeks, we are current on the compilation of high- and lowspin publications

Undergraduate Student Participation

Students trained in:

- Basic nuclear physics and experimental techniques
- Retrievals from ENSDF, XUNDL, NSR databases
- ENSDF format and nuclear quantities involved
- Use of semi-automatic translation codes (PDF to TEXT, TEXT to ENSDF)
- Use of format and consistency checking codes (FMTCHK, PANDORA, ISOTOPE EXPLORER)
- Use of calculation codes
 - (GTOL, HSICC, LOGFT)

Compilation Methods (same as described in USNDP-04 meeting)

- Commercial code Finereader used extensively to create tabular text files from PDF files in journal web pages
- TABULAR-TEXT to ENSDF conversion code, developed at McMaster, routinely used to generate draft ENSDF-formatted datasets
- Datasets run through codes such as FMTCHK and GTOL
- HSICC and LOGFT codes used for decay datasets
- Level schemes, bands and numerical data in the compiled dataset run through the ISOTOPE-EXPLORER code. Finally all data transcription checked manually.
- Data-related discrepancies/inconsistencies and requests for additional data details are resolved with original authors via e-mail communication

Communication with authors

 Authors of original papers frequently contacted to resolve datarelated errors/inconsistencies, and/or to request additional details of data

Generally, prompt and useful response received from the authors

In some cases, based on such communications, errata have been published by the original authors.

Conclusions

The current retrieval rate by the user community, as monitored by NNDC, is about 300/month from the NNDC site. There are other retrievals made through LBNL and RADWARE websites. The datasets in XUNDL are also being used by ENSDF evaluators in their A-chain/nuclide evaluation work

 Availability of compiled XUNDL datasets should potentially accelerate data-evaluation process, and turn around time of A-chain updates in ENSDF database

Amongst the two databases, ENSDF and XUNDL, we believe that the experimentally known/published high-spin level structures are now almost fully covered and made conveniently available to the research/user community through NNDC's retrieval system, LBNL's Isotope Explorer and ORNL's Radware software