LA-UR-05-8430

Approved for public release; distribution is unlimited.

I

Title:	Comparison of ENDF/B-VI and Initial ENDF/B-VII Results for the MCNP Criticality Validation Suite
Author(s):	Russell D. Mosteller
Submitted to:	2005 Winter Meeting of the American Nuclear Society November 12 - 17, 2005 Washington, DC

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Comparison of ENDF/B-VI and Initial ENDF/B-VII Results for the MCNP Criticality Validation Suite

Russell D. Mosteller

Diagnostics Applications Group (X-5) Applied Physics Division Los Alamos National Laboratory

To Be Presented at the 2005 Winter Meeting of the American Nuclear Society Washington, DC November 13 - 17, 2005

An assessment of the reactivity impact of some nuclear data proposed for the initial release of ENDF/B-VII has been made using the MCNP criticality validation suite. Relative to ENDF/B-VI, the changes primarily involve high-energy data for the uranium isotopes and ²³⁹Pu, resonance parameters for ²³³U, ²³⁵U, and ²³⁸U, and the 1/v thermal tail for hydrogen.

Four sets of calculations were performed for the MCNP Criticality Validation Suite using the MCNP5 Monte Carlo code. The first set employed nuclear data from ENDF/B-VI Release 8, the final release for ENDF/B-VI. The second set employed the T16_2003 nuclear data library that was distributed as part of an interim release of MCNP5 in the summer of 2004. The third set used nuclear data generated by group T-16 at Los Alamos National Laboratory for the initial release of ENDF/B-VII, and the fourth set employed the JENDL-3.3 library for MCNP that has recently become available. This presentation omits the T16_2003 results, but they are included in the abstract published in the Transactions for this meeting.

The results from the calculations demonstrate that the ENDF/B-VII changes produce substantial overall improvements relative to ENDF/B-VI and JENDL-3.3. In particular, the calculated ENDF/B-VII results differ from the corresponding benchmark values by more than two standard deviations for only five of the 31 cases in the suite, compared to nine cases for both the ENDF/B-VI and JENDL-3.3 data. Furthermore, the ENDF/B-VI and JENDL-3.3 data each produce statistically better results than the ENDF/B-VII data for only three cases, whereas the ENDF/B-VII data produce statistically better results than ENDF/B-VI and JENDL-3.3 for ten and twelve cases, respectively.

MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory

LA-UR-05-8430

Comparison of ENDF/B-VI and Initial ENDF/B-VII Results for the MCNP Criticality Validation Suite

Russell D. Mosteller

Applied Physics Division Los Alamos National Laboratory mosteller@ lanl.gov

Presented at the 2005 Winter Meeting of the American Nuclear Society November 13 - 17, 2005 Washington, DC

OVERVIEW OF PRESENTATION

Succinct Description of MCNP Criticality Validation Suite

Characteristics of Preliminary Nuclear Data for ENDF/B-VII

Comparison of Results from MCNP5 Using JENDL-3.3, ENDF/B-VI and Initial ENDF/B-VII Nuclear Data Libraries

Conclusions

The World's Greatest Science Protecting America

NNS

MCNP Criticality Validation Suite

Cases were selected to encompass a wide variety of

Fissile isotopes :	²³³ U, ²³⁵ U, and ²³⁹ Pu
Spectra :	Fast, intermediate, and thermal
Compositions :	Metals, oxides, and solutions
Configurations :	Bare and reflected spheres and cylinders, 2-D and 3-D lattices, and infinite homogeneous and heterogeneous regions

²³⁵U Cases were subdivided into HEU, IEU, AND LEU

Input specifications for all 31 cases are taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments

CASES IN THE MCNP CRITICALITY VALIDATION SUITE

Spectrum	Fast			Intermed	The	rmal
Geometry	Bare	Heavy Reflector	Light Reflector	Any	Lattice of Fuel Pins	Solution
²³³ U	Jezebel-233	Flattop-23	U233-MF-05	Falstaff-1*	SB-21/2	ORNL-11
HEU	Godiva Tinkertoy-2	Flattop-25	Godiver	Zeus-2 UH_3	SB-5	ORNL-10
IEU	IEU-MF-03	BIG TEN	IEU-MF-04	Zebra-8H [†]	IEU-CT-02	STACY-36
LEU					B&W XI-2	LEU-ST-02
Pu	Jezebel Jezebel-240 Pu Buttons	Flattop-Pu THOR	Pu-MF-11	HISS/HPG [†]	PNL-33	PNL-2

* Extrapolated to critical

 † k $_{\infty}$ measurement

CASES IN THE CRITICALITY VALIDATION SUITE

Name	Spectrum	Handbook ID	Description
Jezebel-233	Fast	U233-MET-FAST-001	Bare sphere of ²³³ U
Flattop-23	Fast	U233-MET-FAST-006	Sphere of ²³³ U reflected by normal U
U233-MF-05	Fast	U233-MET-FAST-005, case 2	Sphere of ²³³ U reflected by beryllium
Falstaff-1	Intermediate	U233-SOL-INTER-001, case 1	Sphere of uranyl fluoride solution enriched in ²³³ U
SB-21/2	Thermal	U233-COMP-THERM-001, case 3	Lattice of ²³³ U fuel pins in water
ORNL-11	Thermal	U233-SOL-THERM-008	Large sphere of uranyl nitrate solution enriched in ²³³ U
Godiva Tinkertoy-2 Flattop-25 Godiver Zeus-2 UH ₃ SB-5 ORNL-10	Fast Fast Fast Intermediate Intermediate Thermal Thermal	HEU-MET-FAST-001 HEU-MET-FAST-026, case C-11 HEU-MET-FAST-028 HEU-MET-FAST-004 HEU-MET-INTER-006, case 2 HEU-COMP-INTER-003, case 6 U233-COMP-THERM-001, case 6 HEU-SOL-THERM-032	Bare HEU sphere 3 x 3 x 3 array of HEU cylinders in paraffin box HEU sphere reflected by normal U HEU sphere reflected by water HEU platters moderated by graphite and reflected by copper UH ₃ cylinders reflected by depleted uranium Lattice of HEU fuel pins in water, with blanket of ThO ₂ pins Large sphere of HEU nitrate solution
IEU-MF-03	Fast	IEU-MET-FAST-003	Bare sphere of IEU (36 wt.%)
BIG TEN	Fast	IEU-MET-FAST-007	Cylinder of IEU (10 wt.%) reflected by normal uranium
IEU-MF-04	Fast	IEU-MET-FAST-004	Sphere of IEU (36 wt.%) reflected by graphite
Zebra-8H	Intermediate	MIX-MET-FAST-008, case 7	IEU (37.5 wt.%) reflected by normal U and steel
IEU-CT-02	Thermal	IEU-COMP-THERM-002, case 3	Lattice of IEU (17 wt.%) fuel rods in water
STACY-36	Thermal	LEU-SOL-THERM-007, case 36	Cylinder of IEU (9.97 wt.%) uranyl nitrate solution
B&W XI-2	Thermal	LEU-COMP-THERM-008, case 2	Large lattice of LEU (2.46 wt.%) fuel pins in borated water
LEU-ST-02	Thermal	LEU-SOL-THERM-002, case 2	Sphere of LEU (4.9 wt.%) uranyl fluoride solution
Jezebel Jezebel-240 Pu Buttons Flattop-Pu THOR PU-MF-11 HISS/HPG PNL-33 PNL-2	Fast Fast Fast Fast Fast Intermediate Thermal Thermal	PU-MET-FAST-001 PU-MET-FAST-002 PU-MET-FAST-003, case 103 PU-MET-FAST-006 PU-MET-FAST-008 PU-MET-FAST-011 PU-COMP-INTER-001 MIX-COMP-THERM-002, case 4 PU-SOL-THERM-021, case 3	Bare sphere of plutonium Bare sphere of plutonium (20.1 at.% ²⁴⁰ Pu) 3 x 3 x 3 array of small cylinders of plutonium Plutonium sphere reflected by normal U Plutonium sphere reflected by thorium Plutonium sphere reflected by water Infinite, homogeneous mixture of plutonium, hydrogen, and graphite Lattice of mixed-oxide fuel pins in borated water Sphere of plutonium nitrate solution

Applied Physics Division

PURPOSE AND USE OF THE MCNP CRITICALITY VALIDATION SUITE

The MCNP Criticality Validation Suite was developed to assess the reactivity impact of future improvements to MCNP as well as changes to its associated nuclear data libraries

Suite is *not* an absolute indicator of the accuracy or reliability of a given nuclear data library, nor is it intended to be

Suite can provide a general indication of the overall performance of a nuclear data library

Suite can provide an early warning of unexpected or unintended consequences resulting from changes to nuclear data

Applied Physics Division

INITIAL NUCLEAR DATA FOR ENDF/B-VII

Final version of ENDF/B-VI (Release 8) was released in October 2001

JENDL-3.3 library for MCNP recently became available through RSICC

Are future nuclear data libraries likely to produce improved results?

Initial ENDF/B-VII changes (as of March 2005) to ¹H, ²³³U, ²³⁵U, ²³⁸U, and ²³⁹Pu offer encouragement

Data changes primarily involve:

- high-energy cross sections and data for the uranium isotopes and ²³⁹Pu (LANL group T-16)
- revised resonance parameters for ²³³U, ²³⁵U, and ²³⁸U (ORNL)
- slight reduction in 1/v thermal tail for ¹H capture cross section

Applied Physics Division

MCNP5 CALCULATIONS FOR CRITICALITY VALIDATION SUITE

Each calculation employed 550 generations with 10,000 neutrons per generation (350 generations for SB-5 and Zebra-8H)

Results from first 50 generations were excluded from the statistics

Results therefore are based on 5,000,000 active histories for each case (3,000,000 for SB-5 and Zebra-8H)

ENDF/B-VI cross sections were used in ENDF/B-VII calculations for nuclides not included in the initial ENDF/B-VII set (i.e., everything except ¹H, ²³⁹Pu, and the uranium isotopes)

ENDF/B-VI thermal scattering kernels (from SAB2002 library) were used for all three sets of calculations

Applied Physics Division

RESULTS FOR ²³³U BENCHMARKS

	Benchmark	mark Calculated k _{eff}			
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI	JENDL-3.3	
Jezebel-233	1.0000 ± 0.0010	0.9997 ± 0.0003	0.9926 ± 0.0003	1.0041 ± 0.0003	
Flattop-23	1.0000 ± 0.0014	0.9994 ± 0.0003	1.0003 ± 0.0003	0.9985 ± 0.0003	
U233-MF-05	1.0000 ± 0.0030	0.9979 ± 0.0003	0.9972 ± 0.0003	1.0019 ± 0.0003	
Falstaff-1	1.0000 ± 0.0083	0.9906 ± 0.0005	0.9895 ± 0.0005	0.9879 ± 0.0005	
SB-21/2	1.0000 ± 0.0024	0.9988 ± 0.0005	0.9964 ± 0.0005	0.9977 ± 0.0005	
ORNL-11	1.0006 ± 0.0029	1.0041 ± 0.0002	0.9974 ± 0.0002	0.9989 ± 0.0002	

$|\Delta k| \le \sigma \qquad \sigma < |\Delta k| \le 2\sigma$

 k_{eff} for Jezebel-233 improves dramatically, and reactivity swing from Jezebel-233 to Flattop-23 is eliminated

 k_{eff} for SB-2½ improves substantially relative to ENDF/B-VI

JENDL-3.3 produces best result for ORNL-11

Applied Physics Division

RESULTS FOR HEU BENCHMARKS

	Benchmark Calculated k _{eff}			
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI	JENDL-3.3
Godiva	1.0000 ± 0.0010	0.9994 ± 0.0003	0.9963 ± 0.0003	1.0033 ± 0.0003
Tinkertoy-2	1.0000 ± 0.0038	1.0004 ± 0.0003	0.9973 ± 0.0003	1.0042 ± 0.0003
Flattop-25	1.0000 ± 0.0030	1.0029 ± 0.0003	1.0021 ± 0.0003	0.9978 ± 0.0003
Godiver	0.9985 ± 0.0011	0.9978 ± 0.0004	0.9948 ± 0.0003	1.0018 ± 0.0004
UH ₃	1.0000 ± 0.0047	0.9952 ± 0.0004	0.9914 ± 0.0003	0.9967 ± 0.0004
Zeus-2	0.9997 ± 0.0008	0.9958 ± 0.0004	0.9942 ± 0.0003	0.9967 ± 0.0003
SB-5	1.0015 ± 0.0028	0.9957 ± 0.0005	0.9965 ± 0.0005	0.9995 ± 0.0005
ORNL-10	1.0015 ± 0.0026	0.9989 ± 0.0002	0.9992 ± 0.0002	0.9999 ± 0.0002

 k_{eff} improves substantially for Godiva, Godiver, and UH₃ but deteriorates slightly for SB-5

Reactivity swing from Godiva to Flattop-25 is reduced significantly

RESULTS FOR IEU BENCHMARKS

	Benchmark Calculated k _{eff}				
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI	JENDL-3.3	
IEU-MF-03	1.0000 ± 0.0017	1.0027 ± 0.0003	0.9987 ± 0.0003	0.9969 ± 0.0002	
BIG TEN	0.9948 ± 0.0013	0.9952 ± 0.0002	1.0071 ± 0.0003	0.9851 ± 0.0002	
IEU-MF-04	1.0000 ± 0.0030	1.0072 ± 0.0003	1.0036 ± 0.0003	1.0024 ± 0.0003	
Zebra-8H	1.0300 ± 0.0025	1.0198 ± 0.0002	1.0406 ± 0.0002	1.0151 ± 0.0002	
IEU-CT-02	1.0017 ± 0.0044	1.0008 ± 0.0003	1.0004 ± 0.0003	1.0018 ± 0.0003	
STACY-36	0.9988 ± 0.0013	0.9994 ± 0.0003	0.9986 ± 0.0003	0.9999 ± 0.0003	

 $k_{\mbox{\tiny eff}}$ improves dramatically for BIG TEN

 $k_{\mbox{\tiny eff}}$ is worse for IEU-MF-03 and IEU-MF-04 and drops substantially for Zebra-8H

For IEU-CT-02 and STACY-36, changes to resonance parameters offset reactivity effects of other changes for uranium isotopes

RESULTS FOR LEU BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI	JENDL-3.3
B&W XI-2	1.0007 ± 0.0012	1.0000 ± 0.0003	0.9968 ± 0.0003	0.9991 ± 0.0003
LEU-ST-02	1.0024 ± 0.0037	0.9961 ± 0.0003	0.9953 ± 0.0003	0.9962 ± 0.0003

 k_{eff} improves substantially for B&W XI-2, which eliminates need for *ad hoc* adjustment to ²³⁸U resonance integral (used in many nuclear data libraries since early 1970s)

For LEU-ST-02, changes to resonance parameters offset reactivity effects of other changes for uranium isotopes

Applied Physics Division

RESULTS FOR PU BENCHMARKS

	Benchmark		Calculated k _{eff}	
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI	JENDL-3.3
Jezebel	1.0000 ± 0.0020	0.9998 ± 0.0003	0.9971 ± 0.0003	0.9966 ± 0.0004
Jezebel-240	1.0000 ± 0.0020	1.0003 ± 0.0003	0.9980 ± 0.0003	1.0009 ± 0.0004
Pu Buttons	1.0000 ± 0.0030	0.9984 ± 0.0003	0.9962 ± 0.0003	0.9958 ± 0.0004
Flattop-Pu	1.0000 ± 0.0030	1.0004 ± 0.0003	1.0016 ± 0.0003	0.9904 ± 0.0003
THOR	1.0000 ± 0.0006	1.0079 ± 0.0003	1.0057 ± 0.0003	1.0066 ± 0.0003
Pu-MF-11	1.0000 ± 0.0010	0.9992 ± 0.0004	0.9966 ± 0.0004	0.9982 ± 0.0003
HISS/HPG	1.0000 ± 0.0110	1.0106 ± 0.0003	1.0106 ± 0.0003	1.0135 ± 0.0002
PNL-33	1.0024 ± 0.0021	1.0063 ± 0.0003	1.0029 ± 0.0003	1.0069 ± 0.0003
PNL-2	1.0000 ± 0.0065	1.0029 ± 0.0005	1.0033 ± 0.0005	1.0062 ± 0.0005

Striking improvement in k_{eff} for fast cases except THOR

Reactivity swing from Jezebel to Flattop-Pu is eliminated

The World's Greatest Science Protecting America

Applied Physics Division

SUMMARY OF RESULTS FOR MCNP CRITICALITY VALIDATION SUITE

Range	ENDF/B-VII	ENDF/B-VI	JENDL-3.3
$ \Delta \mathbf{k} \leq \sigma$	21	13	13
$\sigma < \Delta \mathbf{k} \le 2\sigma$	5	9	9
$ \Delta k > 2\sigma$	5	9	9

Substantial improvements for bare metal spheres (Jezebel-233, Godiva, and Jezebel), BIG TEN, HEU and Pu metal spheres in water (Godiver and Pu-MF-011, respectively), and LEU lattice (B&W XI-2)

ORNL resonance parameters improve results for Godiver, ORNL-10, IEU-CT-03, STACY-36, B&W XI-2, and LEU-ST-02

ZEUS HEU-GRAPHITE BENCHMARKS

⇒ Cross sections for ²³⁵U in the unresolved resonance region should be re-examined

NEPTUNIUM SPHERE REFLECTED BY HEU

\Rightarrow Fast cross sections for ²³⁷Np should be reviewed

UNMODERATED ZEUS BENCHMARK

Benchmark	Basic Calculat		ted k _{eff}
k _{eff}	Library E	ENDF/B-VI Cu	ENDF/B-V Cu
	ENDF/B-VII	1.0108 ± 0.0003	1.0001 ± 0.0003
1 0012 . 0 0015	ENDF/B-VI	1.0080 ± 0.0003	0.9968 ± 0.0003
1.0012 ± 0.0015	ENDF/B-V	1.0088 ± 0.0003	0.9960 ± 0.0003
	JENDL-3.3	1.0242 ± 0.0003*	1.0000 ± 0.0003
* JENDL-3.3 Cu		lΔk	> 2o

Benchmark contains no moderator and therefore has a fast spectrum

Differences between ENDF/B-V and ENDF/B-VI Cu cross sections have little net reactivity impact on previous Zeus benchmarks, which have intermediate spectra

 \Rightarrow Fast cross sections for Cu should be reviewed

Applied Physics Division

48-INCH SPHERE OF PLUTONIUM NITRATE SOLUTION

Benchmark	Calculated k _{eff}			
k _{eff}	ENDF/B-VII	ENDF/B-VI	JENDL-3.3	
1.0003 ± 0.0033	1.0191 ± 0.0002	1.0189 ± 0.0002	1.0227 ± 0.0002	
		$ \Lambda k > 2\sigma$		

Same sphere as for ORNL-10 (HEU) and ORNL-11 (²³³U) Benchmarks

Very thermal spectra with very little leakage

 \Rightarrow Cross sections for ²³⁹Pu (and probably ²³³U) should be re-examined in the deep thermal range

RESULTS FOR HEAVY-WATER SOLUTIONS

		Calculated k _{eff}		
Case	Benchmark k _{eff}	ENDF/B-VII + JENDL-3.3 ² H	Initial ENDF/B-VII	JENDL-3.3
Reflected Spheres (HEU-SOL-THERM-004)				
1	1.0000 ± 0.0033	0.9947 ± 0.0004	0.9839 ± 0.0004	0.9918 ± 0.0004
2	1.0000 ± 0.0036	0.9911 ± 0.0004	0.9795 ± 0.0004	0.9873 ± 0.0004
3	1.0000 ± 0.0039	0.9975 ± 0.0004	0.9862 ± 0.0004	0.9979 ± 0.0004
4	1.0000 ± 0.0046	0.9998 ± 0.0004	0.9892 ± 0.0004	0.9971 ± 0.0004
5	1.0000 ± 0.0052	0.9972 ± 0.0004	0.9877 ± 0.0005	0.9956 ± 0.0004
6	1.0000 ± 0.0059	0.9936 ± 0.0004	0.9844 ± 0.0004	0.9913 ± 0.0004
Unreflected Cylinders (HEU-SOL-THERM-020)				
1	0.9966 ± 0.0116	1.0041 ± 0.0005	0.9915 ± 0.0005	1.0006 ± 0.0005
2	0.9956 ± 0.0093	1.0077 ± 0.0005	0.9973 ± 0.0005	1.0066 ± 0.0005
3	0.9957 ± 0.0079	1.0163 ± 0.0005	1.0059 ± 0.0005	1.0149 ± 0.0005
4	0.9955 ± 0.0078	1.0139 ± 0.0005	1.0023 ± 0.0005	1.0160 ± 0.0005
5	0.9959 ± 0.0077	1.0204 ± 0.0005	1.0091 ± 0.0005	1.0167 ± 0.0005

 $\sigma < |\Delta \mathbf{k}| \le 2\sigma$

 $|\Delta \mathbf{k}| > 2\sigma$

CONCLUSIONS

Overall, initial ENDF/B-VII produces major reactivity improvements relative to ENDF/B-VI and JENDL-3.3

Reactivity swings from bare spheres to corresponding systems reflected by normal uranium are eliminated or substantially reduced

Need for *ad hoc* adjustment to ²³⁸U resonance integral may be eliminated

Improvements still are needed, particularly for cases with

- intermediate spectra
- thorium
- neptunium
- copper and a fast spectrum
- plutonium and a thermal spectrum
- deuterium (possibly)

Applied Physics Division

