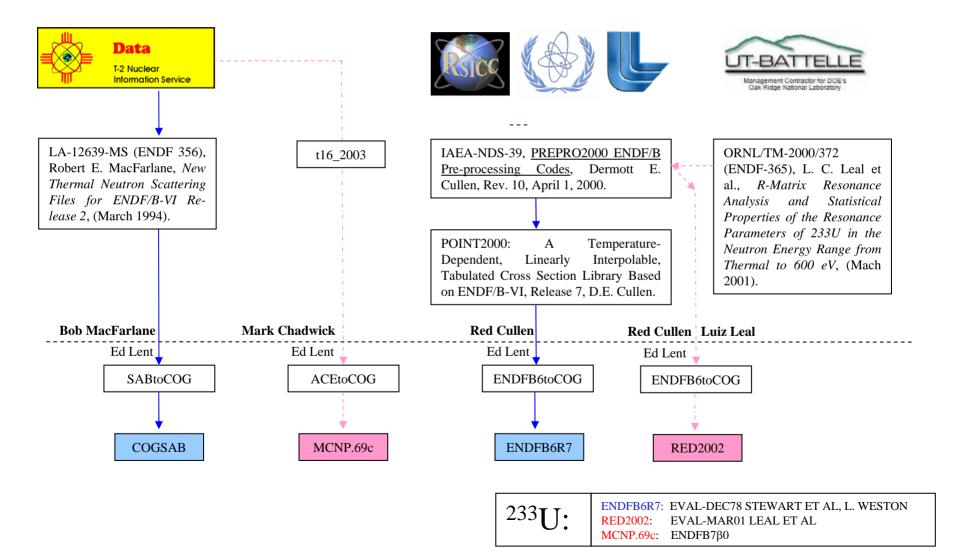
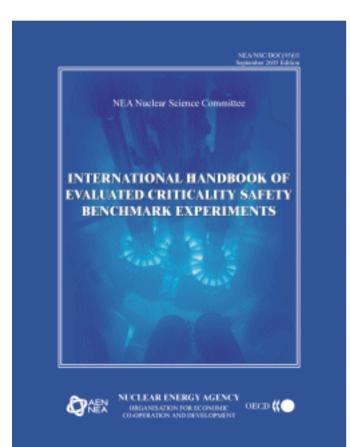
²³³U Critical Data Testing at LLNL

Presentation to the CSEWG on November 8-10, 2005 at BNL


Dave Heinrichs Criticality Safety Section Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Data Processing for COG

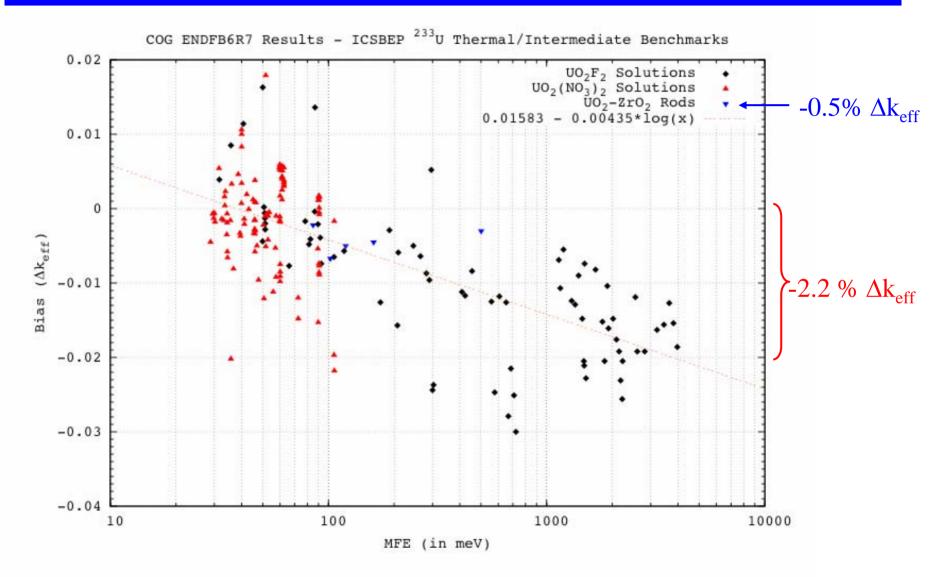


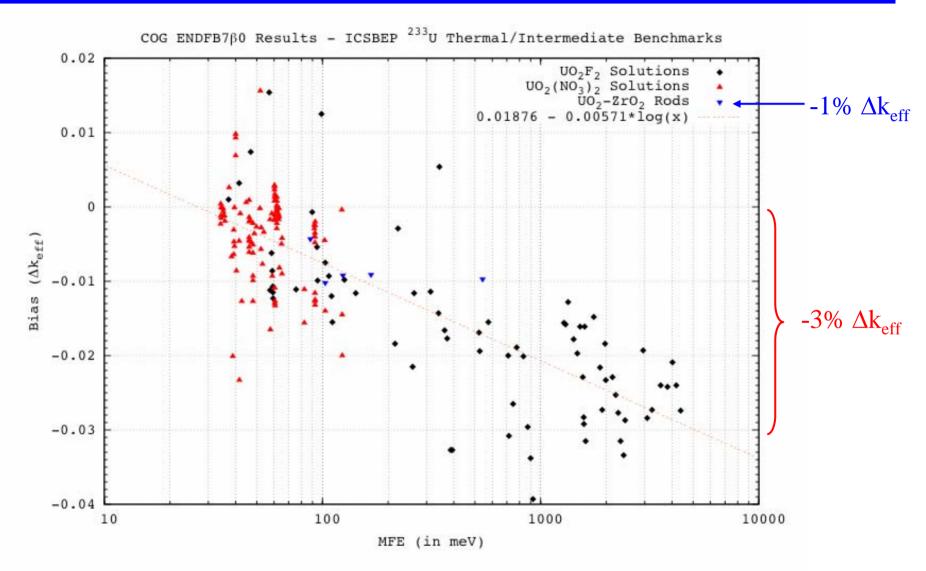
²³³U Benchmark Experiments

ICSBEP Handbook

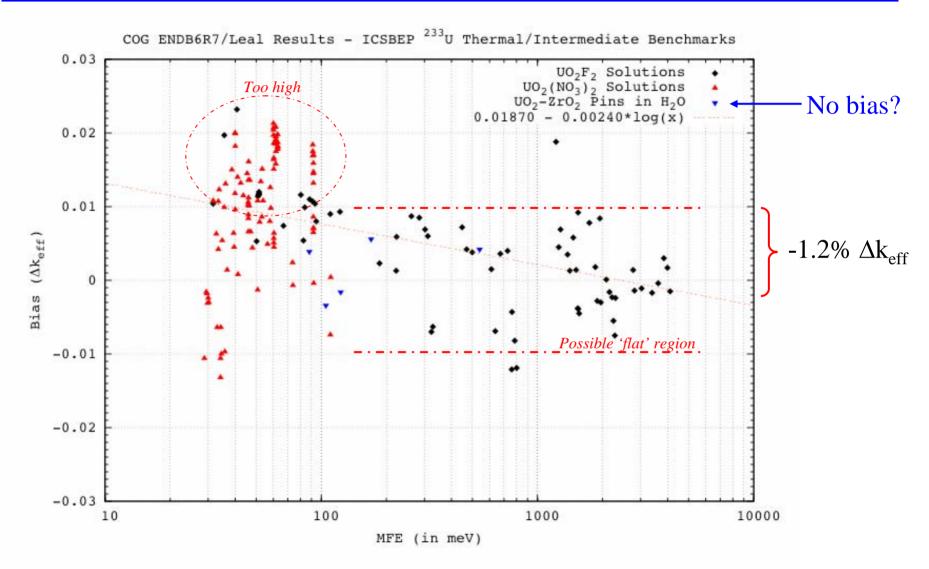
- 10 ²³³U Metal (LANL)
- **5** 233 UO₂-ZrO₂ Lattices (Bettis)
- **64** 233 UO₂F₂ Solution (LLNL)
- **9** 233 UO₂F₂ Solution (ORNL)
- **105** 233 UO₂(NO₃)₂ Solution (ORNL)

193 Total ²³³U Benchmarks


Fast Metal Systems


No.	Reference	²³³ U	Reflector	Benchmark	ENDFB6R7	LEAL	ENDFB7β0
1	U23MF001-1	16.535 kg	None	1.0000(10)	<u>0.9913(3)</u>	0.9984(3)	0.9972(3)
2	U23MF002-1	10.012 kg	Оу	1.0000(10)	0.9943(3)	0.9970(3)	<u>0.9959(3)</u>
3	U23MF002-2	7.601 kg	Оу	1.0000(11)	0.9971(3)	0.9980(3)	0.9972(3)
4	U23MF003-1	10.012 kg	Nat-U	1.0000(10)	0.9957(3)	0.9985(3)	0.9969(3)
5	U23MF003-2	7.601 kg	Nat-U	1.0000(10)	0.9977(3)	0.9987(3)	<u>0.9987(3)</u>
6	U23MF004-1	10.012 kg	W-Alloy	1.0000(07)	1.0025(3)	1.0077(3)	1.0032(3)
7	U23MF004-2	7.601 kg	W-Alloy	1.0000(08)	1.0047(3)	1.0100(3)	1.0039(3)
8	U23MF005-1	10.012 kg	Be	1.0000(30)	0.9938(3)	0.9994(3)	0.9951(3)
9	U23MF005-2	7.601 kg	Be	1.0000(30)	0.9965(3)	1.0025(3)	0.9952(3)
10	U23MF006-1	5.740 kg	Flattop	1.0000(14)	<u>0.9993(3)</u>	<u>0.9995(3)</u>	0.9975(3)

Mean (w/o W-Alloy and Be cases)	1.0000(5)	0.9959(<mark>26</mark>)	0.9984(8)	0.9972(8)
Range (w/o W-Alloy and Be cases)		0.80%	0.25%	0.28%



Thermal/Intermediate Systems - β (-1)

Conclusions

Fast Energies:

ENDFB7 β 0 and 'LEAL' are an improvement over ENDFB6R7. The spread in k_{eff} is reduced (from 0.80%) by a factor of three (to 0.25% and 0.28%) and <k_{eff}> is increased (from 0.996 to 0.998 and 0.997).

Intermediate Energies:

ENDFB6R7 (bad) and ENDFB7 β 0 (worse) both underpredict $\langle k_{eff} \rangle$ with a significant downward trend in energy. 'LEAL' results are superior with much less of a trend (if any).

Thermal Energies:

'LEAL' results have some that are too high and ENDFB7 β 0 and ENDFB6R7 have some that are too low. <u>All</u> results show a 3% Δk_{eff} spread in the critical values with MFE < 100 meV. This is a problem.