

2005 COLLABORATIVE MEASUREMENTS: ORNL & IRMM ORNL & LANL

Klaus Guber (ORNL) Ron Nelson (LANL) Peter Schillebeeckx & Peter Siegler (IRMM)

> CSEWG Meeting Brookhaven National Laboratory November 8-10, 2005

Measurement Overview

- ORNL & IRMM
 - Fission product (FP) data to support burnup credit (BUC) applications
 - ORNL and IRMM established DOE-EURATOM agreement (EC16) to improve FP for BUC
 - FP of interest: ¹⁰³Rh, ¹³³Cs, ¹⁴³Nd, ¹⁴⁹Sm, ¹⁵¹Sm, ¹⁵⁵Gd
 - September 2005: performed ¹⁰³Rh measurement at IRMM
 - ⁵⁵Mn to support criticality safety applications
 - Needed to support DOE Nuclear Criticality Safety Program (NCSP) and DOE Environmental Management (EM) applications
 - ⁵⁵Mn is constituent of structural steel
 - Identified data deficiencies in radiation transport calculations of systems involving ⁵⁵Mn
 - October 2005: performed ⁵⁵Mn measurement at IRMM
- ORNL & LANL
 - ¹⁹F needed to support criticality safety applications
 - ORNL recently completed resonance evaluation; however, discrepancy exists for inelastic measurements in resonance region
 - Inelastic ¹⁹F measurement needed to resolve discrepancy & improve evaluation
 - September 2005: performed inelastic ¹⁹F measurement at WNR

GELINA a powerful white neutron source for high-resolution cross section data

High-energy electron accelerator

- 150 MeV electron accelerator (10 ns, 10 A)
- 800 Hz (100 Hz, 40Hz)
- neutron energy range: thermal 15 MeV
- 4.3 10¹⁰ neutrons / burst

Flight path area

- multi-user facility: 12 different simultaneous experiments
- 24 hours / day basis, 100 h per weel

¹⁰³Rh Experiments at GELINA

- Experimental Conditions:
 - Due to cooling problem not full power : 400 Hz Rep Rate instead of 800 Hz.
 - Pulse width of the neutron beam 1nsec.
- Two experiments were performed:
 - Total cross section (transmission) at 26.45 m flight path with a ⁶Li glass detector using a ¹⁰³Rh sample with 0.00187 at/b.
 - Neutron capture using the pulse height weighting technique with two C₆D₆ detectors at a distance of 28.1m. Sample thickness for ¹⁰³Rh was 0.000337at/b.
- Additional run with background filter were performed, as well as sample out runs.
- Despite the short flight path the resolved energy range is up to several keV.

¹⁰³Rh Capture Data

⁵⁵Mn Experiments at GELINA

- Experimental Conditions:
 - Due to cooling problem not full power : 400 Hz Rep Rate instead of 800 Hz.
 - Pulse width of the neutron beam 1nsec.
- Two experiments were performed:
 - Total cross section (transmission) at 26.45 m flight path with a ⁶Li glass detector using a ⁵⁵Mnsample with 0.118 at/b.
 - Neutron capture using the pulse height weighting technique with two C₆D₆ detectors at a distance of 28.1m. Sample thickness for ⁵⁵Mn was 0.019 at/b.
- Additional run with background filter were performed, as well as sample out runs.
- Despite the short flight path the resolved energy range is up to 300 keV.

⁵⁵Mn Capture Data

⁵⁵Mn Capture Data Detail

E

U. S. DEPARTMENT OF ENERGY

⁵⁵Mn Capture Data Detail At High Neutron Energies

-BATTEL

U. S. DEPARTMENT OF ENERGY

¹⁹F(n,n1γ) Data in EXFOR: two contradicting measurements

Nuclear physics experiments at LANSCE use neutrons at four locations: Line B, Lujan Center, Target 2 and Target 4.

¹⁹F(n,n1γ) Experiments using WNR at LANL

- Experimental Conditions:
 - The GEANIE spectrometer consists of 26 Comptonsuppressed, high-resolution germanium y-ray detectors and is located on an approximately 20-mlong FP.
 - GEANIE is located at flight path 4, 60° right.
- Experiments were performed using a Teflon sample
- (n,n1γ) cross section for the first two exited levels were measured.
- Additional sample out runs were performed.
- Experimental difficulty is the 90 nsec life time of the second level, which will smear out the neutron energy resolution.

