Robert C. Haight Los Alamos National Laboratory

Cross Section Evaluation Working Group Meeting US Nuclear Data Program Meeting Brookhaven National Laboratory November 8-11, 2005

Los Alamos

LA-UR-05-8366

Nuclear data measurements at LANSCE are made with several instruments

DANCE (n,y)

N,Z (n,charged particle)

Fission

Double Frisch-grid fission chamber; also standard fission ion chamber

Nuclear data experiments at LANSCE use neutrons at three locations: Lujan Center, Target 2 and Target 4.

GEANIE (n,x γ)

Recent & planned GEANIE neutron-induced gammaray cross-section measurements at LANSCE/WNR

 \sim 1 MeV < E_n < 200 MeV

- ^{191,193}Ir(n,n'γ), (n,xnγ), and (n,pxnγ) results ND2004
- ¹⁹⁷Au(n,n'γ), (n,xnγ), and (n,pxnγ) results APS DNP 10/2004
 - New levels and γ 's obtained for ^{191,3}Ir and ¹⁹⁷Au
- ^{nat}Cr + ^{nat}V relative, for secondary cross section standards
- ⁴⁸Ti(n,xγ) dissertation D. Dashdorj (NCSU/LLNL)
- ¹⁵⁰Sm(n,2nγ) reported (UCRL-TR-205760)
- Planned analysis:
- ¹⁰⁰Mo(n,xγ),¹³⁰Te(n,xγ), ¹⁹F(n,xγ)
- ^{70,72,74}Ge(n,xγ) INL
- Planned measurements: ¹²⁴Sn, ¹³⁸Ba, ¹⁶⁹Tm, ¹⁸⁶W, ²⁰³Tl, ²³³U

New GEANIE data significantly improve the ¹⁹³Ir(n,n')^{193m}Ir cross section database

GEANIE data on 197Au(n,n') found 52 new gamma rays and 32 new levels

Level scheme above the 11/2- isomer

 $^{197}Au(n,n')^{197m}Au$

N. Fotiades et al., PRC 71, 064314 (2005)

FIGARO (n,xn+y)

Present and future experiments at FIGARO/WNR: neutron-emission spectra and v-bar in fission

 $1 \text{ MeV} \le E_n \le 200 \text{ MeV}$

Fission Chamber in beam

- ^{235,238}U(n,f): E_{fn}, v-bar
- ²³⁵U(n,f): E_{fgamma}
- ²³⁷Np(n,f): E_{fn}, v-bar
- 2.3 m flight path at 20-deg

Ethvigot, Phys. Rev. Lett. R. Nelson, in progress Data being analyzed

Pre-equilibrium preceding fission

Gamma-ray trigger (HPGe or BaF₂)

• ⁹⁹Tc, ²⁰⁸Pb, Ba In progress

Model-Measurement Comparison for Ni(n,n'γ)

N,Z = (n,charged particle) cross sections

We measure proton, deuteron and alpha-particle production cross sections for the Advanced Fuel Cycle Initiative

1 MeV < En < 100 MeV

- Ta(n,xp) and (n,xα)
- **Cr(n,xp)** and (n,xα)
- Planned:
 - -**Zr(n,xp) + (n,x** α **)**

Goal is to determine, e.g. helium production / dpa for accelerated radiation damage analysis

New LANSCE data differentiate among evaluations

New data are for Tantalum and Chromium

DANCE (n,γ)

DANCE Progress 2004 - 2005

Stable Targets:

- ¹⁹⁷Au (well-studied standard)
- ¹³⁹La, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, Cu, V, Rb, Sr (gaps in s-process)
- ¹⁰²Pd (p process)
- ⁶²Ni ("weak" s-process puzzle)
- 76,77,78,80 Se (s-process)
- 54,57,58 Fe (s-process)
- ^{94,95}Mo (γ-ray strength function)
- ^{152,154}Gd (radchem and s-process)
- ^{151,153}Eu (radchem)
- ¹⁴⁷Sm (spin assignments for resonances via multiplicities) Radioactive Targets
- ²³⁷Np -- AFCI
- ^{234,235,236,238}U -- known standards and defense programs
- ²⁴²Pu -- AFCI and defense
- ¹⁵¹Sm -- key s-process branch (largely completed)
- ^{241,242,243}Am (planned) -- AFCI and defense

Capture-fission ratio

• ²³⁵U

²³⁷Np(n,γ)

Test measurements with a fission-tagging detector

- Study:
 - Fission-to-capture ratios ("alpha")
 - Gamma emission following fission
- "Proof-of-principle" experiment used "thin" ²³⁵U deposit on silicon solar cell (T. Ethvignot, et al.)
- Present: Thin gas fission chamber -- PPAC

More on DANCE from Rene Reifarth

Los Alamos

Lead Slowing-Down Spectrometer (n,f)

A Lead Slowing-Down Spectrometer is under development, driven by 800 MeV protons from the PSR

Neutron trajectories following the interaction of 1 proton with the tungsten target in the lead cube

Lead Slowing-Down Spectrometer: To measure fission cross sections of ultra-small samples

- Effort motivated by interest in measuring the fission cross section of isomers and small samples of actinides
- Calculations show that cross section for ^{235m}U is significantly different than for ground state
- Experiments are in collaboration with LLNL, RPI and CEA/DAM

- 235mU
 - 26 min half-life
 - 73eV
 - Decays by internal conversion
 - 99% of 239Pu decays populate 235mU
 - 5 gm of Pu will produce 10ng of ^{235m}U
- Fast extraction of ^{235m}U will be required
- To measure this small cross section, it is necessary to increase the neutron flux by using a lead-slowing down spectrometer (LSDS)

We have characterized the time-energy correlation and measured the resolution in capture resonances

With the LSDS, we have measured the neutron-induced fission cross section on ²³⁹Pu section with sub- μ g samples

Fission Cross Sections

Fission cross section measurements are being renewed at LANSCE

- Data for the Advanced Fuel Cycle Initiative
- New data ²³⁷Np (standard fission chamber)
- FY-06: ²³⁷Np, ^{240, 242}Pu with Frisch-grid chamber
- FY-06-07: Precise ²³⁹Pu fission cross section
- People:
 - Tony Hill
 - Fredrik Tovesson
 - F.-J. Hambsch
 - others

Comparison of this Np²³⁷/U²³⁵ ratio measurement with evaluated data

Uncertainties due to room background, frame-overlap, and time-dependent dark current are reported

Fast reactors emphasize 1 keV – 5 MeV neutron energy range

Two initiatives on the Horizon

Initiative on the Horizon – more neutrons in fast reactor energy region

- Need to improve flux in 1 keV 5 MeV range
- Need a short pulse with better repetition rate
 - Lujan pulse is too long ~ 250 ns
 - WNR: 1.8 to 5 μs spacing is too small

Nuclear data experiments at LANSCE use neutrons at three locations: Lujan Center, Target 2 and Target 4.

Stacking single micropulses in PSR will increase proton pulse

Initiative on the Horizon – Materials Test Station for DOE/NE

- Peak fast (>0.1 MeV) neutron flux of ≥1x10¹⁵ n.cm⁻².s⁻¹
- At least 1 kW/cm³ volumetric heating in at least 30 fuel pellets
- Burnup rate of 3% per year in the peak flux region
- Displacement rate in iron of at least 10 dpa/y

MTS will be located in the 32,000-ft² LANSCE "Area A" experiment hall

Existing assets include: 800-MeV proton linac 30-T crane Secondary cooling loops Back-up generator Shield blocks Utilities

MTS will provide the first fast neutron irradiation capability in the USA since the shutdown of the FFTF and EBR-II

MTS capitalizes on the pulsed nature of the LANSCE beam to illuminate two target halves, thereby creating a "flux trap" in between

- The 1.5-cm-wide by 6-cm-high proton beam spot is directed on one target half during a 625-µs macropulse
- During the 7.5 ms that the proton beam is off, magnet polarities are switched
- The next beam macropulse is directed onto the other target half
- 50 macropulses hit each target half every second

The damage rates for the MTS are similar to that predicted in IFMIF and roughly twice ITER

	appm He/FPY*	dpa/FPY*	He/dpa
ITER 1st wall	114	10.6	10.8
IFMIF HFTM	319	25.6	12.5
MTS peak	305	23.4	13.0
MTS (100 cc)	277	20.4	13.6

*FPY = full power year; MTS expected operation is 4400 hrs per year.

Possible problems at LANSCE

- Technical issues
 - High power amplifier tube availability and quality (Burle 7835) → limits WNR to 40 Hz (decrease in beam current by factor of ~ 2.5)
 - LANSCE-Refurbishment ("LANSCE-R")
- Funding problems (NNSA, LANL contract, sales tax, etc.) → 5 months of running in FY06 @ 20 Hz for Lujan (usual) and 40 Hz (down by factor of 2.5)
 - Electricity costs for WNR running
 - LANSCE-R
 - NNSA funding for nuclear data

We address the needs of LANSCE sponsors

- National Nuclear Security Administration
 - Program in radchem cross section measurements
 - » Neutron capture cross sections on radioactive targets (DANCE)
 - » Cross section measurements on high-order (n,2n), (n,xn) reactions (GEANIE)

Program in neutron-induced fission measurements

- » Fission product distributions (GEANIE)
- » Energy output in fission: neutron and γ -ray spectra (FIGARO)
- » Nuclear properties of fission products and isomers (GEANIE and FIGARO)

Office of Nuclear Energy

- Measurements in support of the AFCI program include:
 - » Capture and fission cross section on actinides
 - » Gas production: (n,p), (n, α) reactions in structural materials

Office of Science

- Support of SNS in understanding pulsed radiation effects on liquid mercury targets
- Fundamental physics experiments and nuclear data

National Resource

- Nuclear science User Facility for defense, basic and applied research
- Industrial testing of semiconductor devices in neutron beams
- University research in nuclear science

The LANSCE program in nuclear data involves many laboratories

- GEANIE LANL, LLNL, INL, ORNL, Bruyères-le-Châtel, NC State
- FIGARO LANL, Bruyères-le-Châtel
- N,Z LANL, Ohio U
- DANCE LANL, LLNL, ORNL, INL, Colorado School of Mines, FZK Karlsruhe
- LSDS LANL, LLNL, Bruyères-le-Châtel, RPI
- Fission LANL, IRMM, LLNL, INL
- Others MIT, Kentucky, Kyushu, Harvard,...

