LANL Report

T. Kawano

Collaboration / Coordination

- CSEWG Evaluation Committee meeting, USNDP Nuclear Reaction WG
- Complete the ND2004 conference proceedings.
- Participated in NEA WPEC 2005 meeting in Antwerp, led a small meeting of the WPEC Subgroup A on nuclear model codes.
- Talk at 2004 IAEA Vienna meetings Th-U fuel cycle, RIPL
- Talk at 2005 Gen-IV workshop Monte Carlo method to estimate uncertainties in the k_{eff} for Jezebel.
- Hosted key researchers from CEA/BRC, Bordeaux, JAERI/Japan, Geel.
- A student from Japan visited T-16 to develop McGNASH modules
 - T. Watanabe from Kyushu University, Japan
- Two workshops at LANL for R.E. MacFarlane, and for D. Madland

Web Site Maintenance

- Upgraded T-16 web site by P.Talou.
- The latest LANL evaluations were made available via our WWW site: http://t16web.lanl.gov/

ENDF Evaluations

- New improved evaluations for the ^{241,242g,242m}Am have been submitted for ENDF/B-VII.
- Photonuclear data have been submitted for ENDF/B-VII.
- We have performed new GNASH analyses for LANSCE/GEANIE data on ^{191,193}Ir and ⁴⁸Ti.
- Evaluation of the light elements standards was done.
- New calculations for the β -delayed neutron energy spectrum, based on Möller's β decay data and Hauser-Feshbach calculations.

Covariance Data

A new capability has been established as a collaboration between LANL and BNL/NNDC, to generate covariance data.

Nuclear Reaction Standards

The new standards, IAEA CRP, have been included in ENDF/B-VII.

Nuclear Model Development

- Developed a new GNASH analysis for spin physics in the pre-equilibrium process.
- Calculation and interpretation γ -ray reactions for 191,193 Ir (n, γ) , wtich produce unstable products and isomers.
- Developed a new code to calculate β -delayed neutron spectrum.
- Direct/Semidirect capture module for McGNASH, using Hartree-Fock BCS calcualations.

Spin Distribution in the Continuum

- The FKK calculation suppresses the high-spin state population in the continuum because its angular momentum transfer is not so large.
- We expect that transitions from the higher spin-state become smaller.

Gamma-ray to the Isomeric State, 399 keV

478.94 keV $15/2^- \rightarrow$ **80.22 keV** $11/2^-$

Delayed Neutron Spectrum

