Covariance work at LLNL

D.A. Brown, J. McAninch, J. Pruet for LLNL/CNP Group

- Covariance data in XENDL
- Probability based uncertainty quantification

Covariance data in XEndl

- Covariance matrices can be large – Want a compact representation.
- Disparate data sets can be coupled
 - e.g., the ²³⁹Pu(n,f) cross section is often measured relative to the ²³⁵U(n,f) cross section
- Discovering which other data co-varies with a given datum is not straight forward.

We have developed data structures that address these issues

XEndl ideal tool to store complex data

- Have representation of matrices, vectors
- Linear algebra can be used to compress matrices
- Hyperlinks connect data to subspace of covariance matrix
- Can discover if two sets co-vary by comparing hyperlink URLs

Variance of data may not obey Gaussian statistics and correlations may be non-linear

Probability distributions for metrics based on knowledge of the **nuclear data**

$$L_i = (\sigma_{i0}, ..., \sigma_{ik}, ...)$$

Probability distributions for **metrics** based on knowledge of the nuclear data

1. Sample the nuclear data.

$$L_i = (\sigma_{i0}, ..., \sigma_{ik}, ...)$$

2. Calculate metrics for each library.

$$\mu_{ij} = f_j(\mathsf{L}_i)$$

Probability distributions for metrics based on **knowledge** of the nuclear data

1. Sample the nuclear data.

$$L_i = (\sigma_{i0}, ..., \sigma_{ik}, ...)$$

239Pu(n,n)

239Pu(n,fission)

Energy (MeV)

10

ENDL-99 ENDF-B/V

ENDF-B/VI

σ (b)₉₀

σ (b)

0.1

 σ_k

3.

libraries.

 $W(L_i)$

Probability distributions for metrics based on knowledge of the nuclear data

1. Sample the nuclear data.

- Reactions:
 - ${}^{239}Pu(n,n)$
 - ${}^{239}Pu(n,n')$
 - ${}^{239}Pu(n,f)$
- Energy dependent variations
- Data types
 - Cross section
 - Angular Distribution
 - Outgoing Neutron Energy
 - Fission Neutron Multiplicity

- Run simulation
 - to each system studied
 - for each sampled library, L_i

 μ_i

- Run simulation
 - to each system studied
 - for each sampled library, L_i
- Models •
 - Jezebel

- **Metrics**
 - Jezebel criticality, k_{eff}

- Run simulation
 - to each system studied
 - for each sampled library, L_i
- Models •
 - Jezebel
 - System 1
- **Metrics**
 - Jezebel criticality, k_{eff}
 - Metric, m1

- Run simulation
 - to each system studied
 - for each sampled library, L_i
- Models \bullet
 - Jezebel
 - System 1
 - System 2
- **Metrics** •
 - Jezebel criticality, k_{eff}

LICDI DDEC 014007 12

- Metric, m1
 - Metric, m2

 σ_k

 μ_j

 $\mu_{ij} = f_j(\mathsf{L}_i)$

 σ_k

Effect of other nuclear data,

 $\sigma_{m\neq k}$

or other physics, e.g. ...

So we vary all parameters simultaneously.

 μ_i

 σ_k

 μ_j

3. Weight the libraries. $W(L_i)$

 σ_{nf}

Weight by

Direct fit to measured or evaluated nuclear data...

$$W(L_i) = W_0 \exp\left[\frac{1}{2} \left(\frac{\sigma_{nf,i} - \sigma_{nf,ENDL}}{\delta \sigma_{nf}}\right)^2\right]$$

 μ_j

3. Weight the libraries. $W(L_i)$

$\sigma \overline{v}$

Weight by

Direct fit to measured or evaluated nuclear data...

$$W(L_i) = W_0 \exp\left[\frac{1}{2} \left(\frac{\sigma_{nf,i} - \sigma_{nf,ENDL}}{\delta\sigma_{nf}}\right)^2\right]$$

<u>Or by,</u> fit of calculated metric to a measured values...

$$W(L_i) = W_0 \exp\left[\frac{1}{2} \left(\frac{k_i - k_{Jezebel}}{\delta k}\right)^2\right]$$

3. Weight the libraries. $W(L_i)$

 σ_k

Flexible enough to handle... non-Gaussian distributions

Or... inconsistent evaluations.

 μ_j

4. Histogram the metrics.

 $P(\mu_j)$

The weighted histogram $P(\mu_j)$ represents the state of knowledge of the metric μ_j

 μ_j

New Uncertainty Quantification scheme

- Instead of data and covariance, store:
 - Ensemble of data realizations
 - Post and prior weights
- Proof of concept shown
- Code being integrated into our nuclear data infrastructure

