EMPIRE+KALMAN

Mike Herman

National Nuclear Data Center Brookhaven National Laboratory mwherman@bnl.gov

WPEC Subgroup 24

National Nuclear	Data Center		BROOKHAVEN						
NNDC Da	tabases: ENDF CSISRS CINDA Ni	uDat NSR XUNDL ENSDF MIRD							
Search the NNDC:									
NNDC Site Index	working Party on International Nuclear Data Evaluation Cooperation (WPEC)								
WPEC									
Proposal for SG24	Subgroup 24: Covariance Data in the Fast Neutron Region								
SG23 Webpage									
SG21 Webpage	Proposal								
Proposal for SG24 was discussed and approved at the WPEC annual meeting, Antwerp, Belgium April 8-9, 2005.									
	Membership								
	Coordinator	Mike Herman, ENDF Project							
	Monitor	Arjan Koning, JEFF project							
	• ENDF	M. Herman and P. Oblozinsky (BNL), T. Kawano and P. Talou (LANL), R. Capote-Noy and A. Trkov (IAEA Vienna)							
	• JEFF	A. Koning (NRG Petten)							
	• JENDL	T. Nakagawa (JAERI)							
	Observe								

Charge

Develop methodology and tools for producing covariance data in the fast neutron region. Specific goals:

WPEC Subgroup 24

Develop methodology and tools for producing covariance data in the fast neutron region.

- Specific goals:
 - Develop covariance generation capabilities in nuclear reaction model codes EMPIRE, McGNASH and TALYS using:
 - KALMAN (Bayesian) method and
 - Monte Carlo sensitivity method.

- Compare results of these methods and validate the methodology against experimental covariance data.
- Address correlations between fast neutron region and resonance region (low priority goal).
- Produce covariance data for a few selected materials.

EMPIRE+KALMAN

EMPIRE+KALMAN

Application to Gd isotopes

- Sensitivity matrices calculated for 152,(153),154,156,157,158,160-Gd
- Nuclear models: CC, MSD, MSC, PE, HF
- Experimental data
 - Karlsruhe capture
 - Frehaut (n,2n)
- Starting from the very good agreement between calculations and experimental data

- 15 model parameters varied
 - omp real and imaginary depth
 - level density parameter for the first 4 nuclei along the neutron decay
 - emission width for γ, n, and p from the Compound Nucleus
 - Preequilibrium free path
 - MSD response functions
- Uncorrelated parameters with 10% uncertainty

Model parameters (n+Gd156)

	PARAMETER	INITIAL	FINAL	ERROF	٤		
1	OMPVV (Gd156+n)	1.0	9.8466E-01	3.7	(%)
2	OMPWS (Gd156+n)	1.0	9.9756E-01	8.4	(%)
3	OMPWV (Gd156+n)	1.0	1.0000E+00	10.	(%)
4	OMPVV (Gd156+p)	1.0	1.0000E+00	10.	(%)
5	OMPWS (Gd156+p)	1.0	1.0000E+00	10.	(%)
6	OMPWV (Gd156+p)	1.0	1.0000E+00	10.	(%)
7	a (Gd157)	1.0	9.9909E-01	3.9	(%)
8	a(Gd156)	1.0	1.0000E+00	10.	(%)
9	a(Gd155)	1.0	1.0000E+00	10.	(%)
10	a(Gd154)	1.0	1.0000E+00	10.	(%)
11	TUNE (Gd157 g)	1.0	9.9985E-01	9.2	(%)
12	TUNE (Gd157 p)	1.0	1.0000E+00	10.	(%)
13	TUNE (Gd157 a)	1.0	1.0000E+00	10.	(%)
14	PE mean free pat	h 1.0	1.0000E+00	10.	(%)
15	MSD resp. funct	1.0	1.0000E+00	10.	(%)

Model parameters (n+Gd156)

					1	2	3	4	5	6	7	8	9	10
1	OMPVV	156	n	9.85E-01	1000									
2	OMPWS	156	n	9.98E-01	90	1000								
3	OMPWV	156	n	1.00E+00	0	0	1000							
4	OMPVV	156	р	1.00E+00	0	0	0	1000						
5	OMPWS	156	р	1.00E+00	0	0	0	0	1000					
6	OMPWV	156	р	1.00E+00	0	0	0	0	0	1000				
_ 7	a	157		9.99E-01	124	-65	0	0	0	0	1000			
8	a	156		1.00E+00	0	0	0	0	0	0	0	1000		
9	a	155		1.00E+00	0	0	0	0	0	0	0	0	1000	
10	a	154		1.00E+00	0	0	0	0	0	0	0	0	0	1000
11	TUNE	157 g	g	1.00E+00	25	-48	0	0	0	0	(-961	0	0	0
12	TUNE	ן 157	p	1.00E+00	0	0	0	0	0	0	0	0	0	0
13	TUNE	157 a	a	1.00E+00	0	0	0	0	0	0	0	0	0	0
14	PCROS	S		1.00E+00	0	0	0	0	0	0	0	0	0	0
15	RESNO	R		1.00E+00	0	0	0	0	0	0	0	0	0	0

Correlation ¹⁶⁰Gd(n,γ) Energy-Energy

-No experimental data -No correlation between model parameters

Correlation ¹⁶⁰**Gd(n,γ) Energy-Energy**

2 sets of experimental data for (n,γ) , correlation: 0.20

Effect of the experimental constrain

¹⁶⁰Gd(n,g) energy-energy correlation

Without experimental data

With experimental data

The monster

EMPIRE+KALMAN iterative fitting

Conclusions

- EMPIRE+KALMAN system is well advanced
 - covariances can be produced for all reactions
 - automatic ENDF formatting only for capture
 - the system will be extended and improved
- Structure of the covariance matrix needs better understanding
- Intercomparison of methods and validation against experimental uncertainties (benchmarks?) should be performed

- Combination of EMPIRE+KALMAN can bring a major breakthrough in the evaluation methodology
- EMPIRE is also ready to be used for Monte-Carlo calculations (e.g., 232-Th at IAEA)

