s-process modeling

René Reifarth Los Alamos National Laboratory

Cross Section Evaluation Working Group meeting

National Nuclear Data Center, Brookhaven National Laboratory, November 8 - 10, 2005

Collaborators

U. Agvaanluvsan, A. Alpizar, J.A. Becker, E.M. Bond, T.A. Bredeweg, E. Bond, J.C. Browne, E.I. Esch, M.M. Fowler, S.E. Glover, U. Greife, R.C. Haight,
R. Hatarik, M. Heil , F. Herwig, F. Kaeppeler, T. Kawano, M. Nortier, J.M. O'Donnell, R.S. Rundberg, J.L. Ullmann,
D.J. Vieira, J.M. Schwantes, J.B. Wilhelmy, J.M. Wouters

the s-process

proton number

neutron number

The observable: Stardust from meteorites

Dust forms in the cool mass outflows of s-process generating stars.

Individual dust grains extracted from primitive meteorites can be associated with their individual site of origin around one star ... tracing that star's individual isotopic signature.

Astrophysics theory of convection

Schematic of He-shell flash

2D-model of White Dwarf convection zone

WIDTH (6.85 km)

How efficient is *extra mixing* in deep stellar interior?

Mixing extends into stable layers -> *extra mixing*.

Test with 1D exponential diffusion approximation, efficiency parameter f.

Probing efficiency of mixing with the s-process and grains

Cross Sections of Radioactive Isotopes?

Connection between theory and experiment

Detector for Advanced Neutron Capture Experiments

neutrons:

- spallation source
- thermal .. 500 keV
- 20 m flight path
- 3 10⁵ n/s/cm²/decade

γ**-Detector:**

- 160 BaF₂ crystals
- 4 different shapes
- R_i=17 cm, R_a=32 cm
- 7 cm ⁶LiH inside
- $\varepsilon_{\gamma} \approx 90 \%$
- $\varepsilon_{casc} \approx 98 \%$

¹⁵¹Sm combining to decoupled branching regions

0.5 mg of 151 Sm(n, γ) – TOF, t_{1/2} = 100 yr

Summary

- (n,γ) data on radioactive isotopes are extremely important for modern astrophysics
- DANCE contributes in the half live time range above a few hundred days
- ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵³Gd is planned and funded
- Many can be measured now, more will have to wait for future facilities