¹³C(p,γ) ¹⁴N as source reaction for interrogation and ¹⁰B(p,α) ⁷Be reaction

> "Hypotheses are nets only he who casts will catch" Novalis

Philip Page Los Alamos National Laboratory USNDP, Nov. 10, 10:45-12:45

Application: Interrogation

 Explosives containing ¹⁴N detection system: Inspection of cargo mainly at airports, but also other ports

 ✓ Nuclear resonance absorption: Bombard ¹⁴N with mono-energetic γ beam where cross-section very high Morgado et al., 1994; Vartsky et al., 1989; Biesiot and Smith, 1981

$p \ {}^{13}C \rightarrow \gamma_0 \ {}^{14}N$

Mono-energetic γ beam \leftarrow Mono-energetic ρ beam

 $^{13}\mathrm{C}$ (p, $\!\gamma_0\!)$ Cross Section

Summary: ${}^{13}C(p,\gamma_0)$ 14N

*3 data sets used for R-matrix fit to 4 known resonances (background) and generation of $E_p = 1.76$ MeV resonance

♦ ENDF cross-section files with angular dist. for p ¹³C → γ_0 ¹⁴N, 0.01 < E_p < 2 MeV

R-matrix fit for ${}^{10}B(p,\alpha_0)$ 7Be

 $^{10}B~(p,\!\alpha_{_{\scriptstyle 0}})$ Cross Section

 $^{10}B(p,\alpha_0)$ Differential Cross Section at 90 $^{\circ}_{lab}$

Benefits of R-matrix

 Predict isospin related reactions
Fill in data (e.g. ¹⁰B (p,α₀) by elastic)
Low-energy region (e.g. resonance @ E_p = 10 keV; influence of elastic) ⇒ S-factors in astrophysics may need multichannel R-matrix fit

Summary: ${}^{10}B(p,\alpha_0)$ ${}^{7}Be$ 🚸 F K Evaluated cross sections and angular dependence in ENDF format for 2 reactions $^{10}Bp \rightarrow ^{10}Bp$, $^{7}Be\alpha$ K Temperature dependent reaction rates in NDI format for reaction ${}^{10}B$ (p, α_0) ${}^{7}Be$ \diamond b $\approx {}^{16}O(n,\alpha_0) {}^{13}C$ needs to be re-evaluated:

New data are 30% lower than old data

