Recent Activities & Initiatives in the ORNL Nuclear Data Program

Caroline Nesaraja, Michael Smith ORNL Physics Division

									No249									-9.25S			No?61
	•									6.6			1£CM			al e		lease -	99 X	2.2	
						12) (ARS)		lentar (1230- # 8	12 (4).47K (Md253			Md250 77 M	19Hd257			Md260 MBD
				1.1.19.48	1.1.19.4.1													Fm256			
																		1575M		- 300-6X 17	
				SSI.	*****	`~\`4\$	×34			Es247	Es248		Es250						Es256		
				1		199	197										271.7 D			77 D	
	23247 - 7					Cf242	Cf243		Cf245							Cf252	Cf253	Cf254	Cf255	Cf256 113 X	
								-										Bk253		10.3 K	
		-1 M		-3M		-3M		4.1H								51.6M	-2 M	-10M	-2 %		
																		1Cm252			
	-5N	-10 M		2.4H	1.1			IGBI					1 540000 Y			-9700 Y	163 M	4 1			
	Am234 2.328	3300° ST	Am230	Аш237 751 ж	Ani235 wa	Am239 it ya						Am245 2018	Am246 wa	Am247 ESUM	Am248 -10 8	Am249					
													Pu245			_					
		ER H						650 Y				800000 ¥			1270						
													Np244								
	14.7M			· ·		\$144 000 Y		2.7565 D			22 M	1.8534	2.29 M								
				U234 0.0054	U235 0.7204	U236		U238 449869 Y			U241 -5⊯	L242									
Pa229	Pa230	Pa231	Pa232	P1233	Pa234	Pa235	Pa236	P1237	Pr238		Pa240										
					6.П.Н	14.5X	91 M	87 X	2.3M	.D6 M	-1 M										
									Th237	Th238											
19.16 Y Ac227		75980 Y	25.52 H Ac230	100		54.ICD	71 M		Ac236	-20 M											
21.775 Y		671 671	112 S	7.5%	1195	AC255		-40 S	-214												
R1226	Ra227		Ra229	Ra230	Ra231	Ra232															
	<u>1</u> 111	*75*		gn M	105.5																
	1.6	Fr227	10444		1.5.		:: : : : : : : : : : : : : : : : : : :														
	Rn225																				
				655 655												•					
81228																					

Activities

Nuclear Structure Data

- Actinide A-chain Evaluations
- Nuclear Structure Database Development linking Radware and ENSDF

Nuclear Astrophysics Data

- Evaluation of Reactions critical for Stellar Explosions
 couple research and data activities
- Expand functionality of the Computational Infrastructure for Nuclear Astrophysics

- attract young scientist & students for summer/ semester projects

Actinide Evaluations

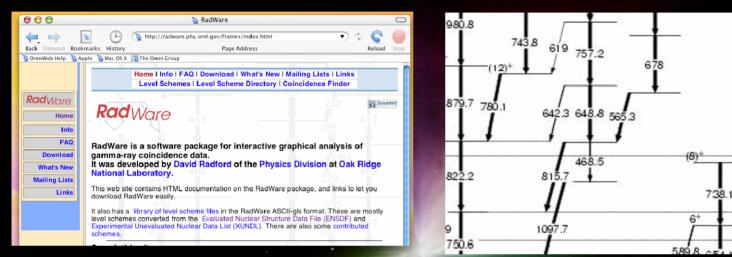
Murray Martin & Caroline Nesaraja

Ensures that ORNL will continue its long history of excellence in Structure Evaluations Responsibility: Actinide Evaluations A=241 – 249

Progress FY05

A=241 (completed and is at BNL for publication)
A=208 (in progress and to be completed at the end of November)
A=245 (begin in November)

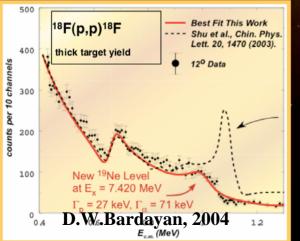
Training

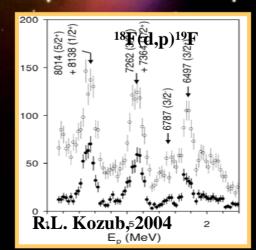

• Caroline had attended the

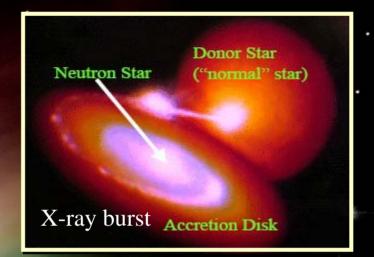
- Workshop on Nuclear Structure & Decay Data: Theory & Evaluation at Trieste, Italy 2005
- Murray will be training Caroline to do evaluations on A= 245

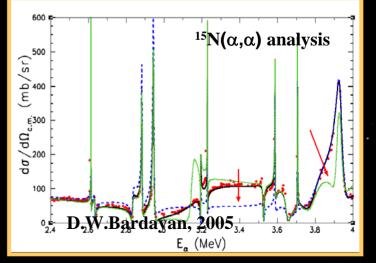
Nuclear Structure Databases: ENSDF and RADWARE

D. Radford


- ENSDF at NNDC: World's Best Nuclear Structure Data Base
 RADWARE: World's Best Data Analysis Tool in High Spin Nuclear Structure Physics
 - Combine by converting ENSDF & XUNDL files into RADWARE format radware.phy.ornl.gov
- Users can display & manipulate datasets, incorporate ENSDF information into ongoing analyses of experimental data, perform advance searches (coincidence γ rays), generate high quality output
- Current plans are to maintain the website with regular ENSDF uploads


Nuclear Astrophysics Data

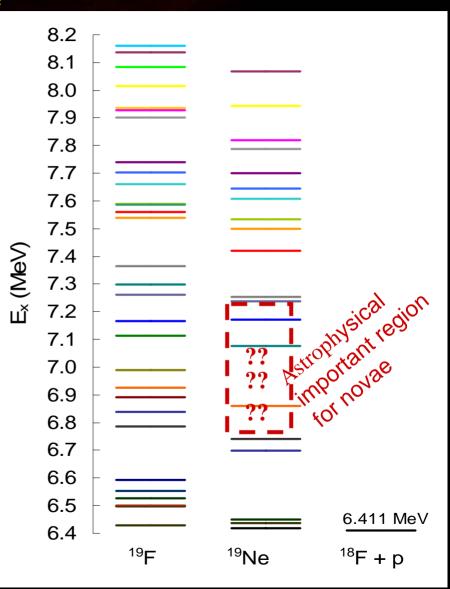

$^{18}F(p,\alpha)^{15}O \& ^{18}F(p,\gamma)^{19}Ne$

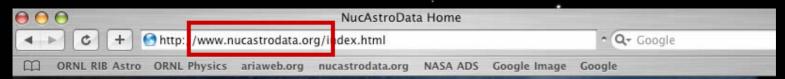

Motivation

- Important for novae & X-ray bursts
- Many experiments performed with radioactive beams require new evaluations
- New evaluation of ¹⁹F levels from the legacy of ¹⁵N(α,α) data

¹⁸F +p evaluation task

Detailed nuclear structure information for ¹⁹Ne \sim 30 levels between E_x= 6.411 -8.100 MeV

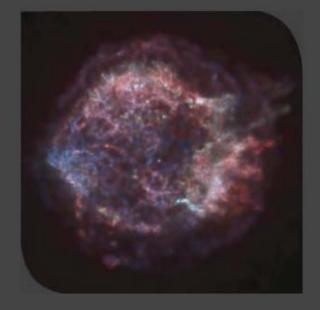

- Excitation energies for missing levels (scaled using Thomas-Ehrman shift calculations)
- spin and parity assignments
 (angular momentum transfer or J^π of mirror nuclei)
- Partial gamma widths , $\Gamma\gamma$ (corrected for phase space & reduced transition probability for $\Gamma\gamma$ of mirror nuclei)


• Partial proton widths, Γp

(spectroscopic factor and using a diffuse surface potential or by direct measurements)

• Partial alpha widths $\Gamma \alpha$

(assuming analog states have same reduced widths & correcting for the Coulomb barrier penetration)



- processing & dissemination work is needed along with evaluations
- website for Nuclear Astrophysics Data helps facilitate this
- provides convenient entry point for astrophysics data on the web
- categorizes & hyperlinks all available datasets

NUCASTRODATA.ORG


🕘 WELCOME — DATASETS — INFRASTRUCTURE

NUCASTRODATA.ORG is your WWW resource for creating, accessing, and managing nuclear physics information for astrophysics studies

D A T A S E T S Hyperlinks to all online nuclear datasets, categorized and continually updated

INFRASTRUCTURE A suite of codes with a graphical user interface enabling researchers to calculate thermonuclear reaction rates from nuclear physics input, put them into rate libraries browse and plot the rates, and manage and share rate libraries with the community

Theoretical Cross Sections

Plots of Nuclear Reaction Rates & Cross Sections

Nuclear Structure

Sections

Charged Particle-Induced Reaction Rates - Caughlan and Fowler 1988, Caltech [ORNL]

Light Charged Particle-Induced Reaction Rates - Hale et al., LANL [LANL]

datasets

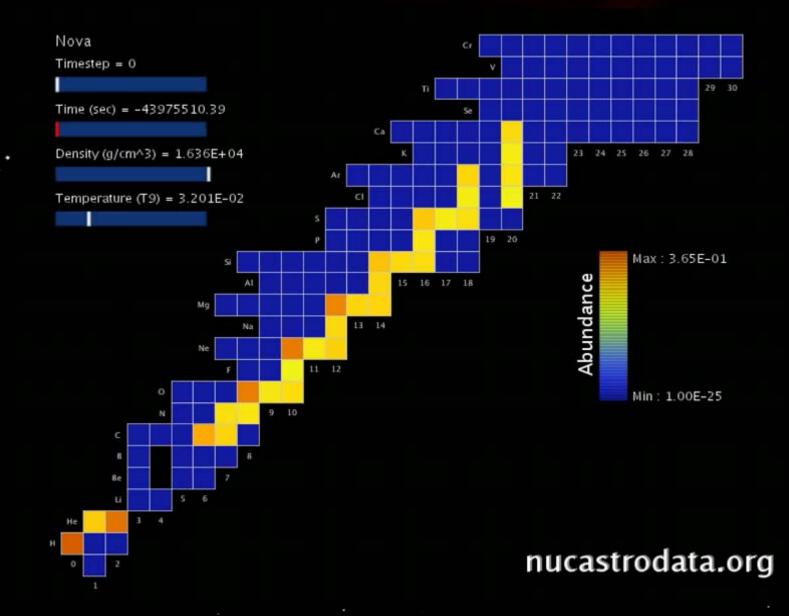
Computational Infrastructure for Nuclear Astrophysics

With a few mouse clicks, the suite enables users to:

- store, renormalize, extrapolate cross sections & s-factors
- calculate reaction rates from cross sections & s-factors
- parameterize reaction rates
- plot & modify reaction rates
- insert rates into new or existing libraries
- create, store, modify, document, merge, & share libraries
- run, store, compare, & visualize element synthesis calculations

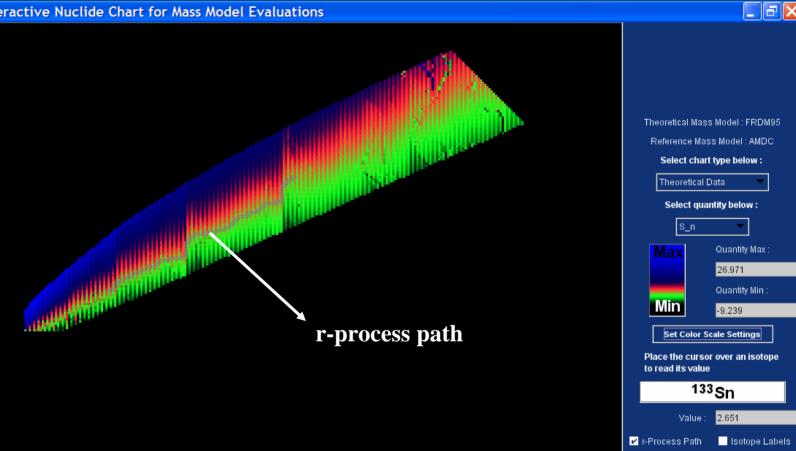
Astrophysics online computer system - C.D. Nesaraja Thursday: Common Session - Modeling & Astrophysics

Computational Infrastructure for Nuclear Astrophysics



features added since last UNSDP meeting

- compare and visualize difference between theoretical & measured masses, separation energies, and Q-values
- view, add, and post comments to a reaction
- run element synthesis calculation, visualize & create movies of
 - reaction fluxes
 - abundance & time derivatives of abundance


Registered Users Institutes: 39 Countries: 15

Element Synthesis Animator: Abundance

Screenshot: Mass Model Evaluator

Magic Numbers

Zoom (%)

Stable Isotopes

12

Plot of S_n from FRDM mass formula (P. Moller et. al. 1995) shows r- process path follows constant S_n contours in the NZ-plane

Screenshot: Rate Commentor

Rate Commentor										
 p + 18F> 4He + 150 (0) P Distinct #1 (0) P Distinct #2 (2) ORNL Canonical-2000-B OISTINCT #3 (0) 	Subject test comment on distinct r Re: test comment on disti test comment		p + 18F> 4He +	+ 150\Dis 2 + 150\Dis 2	Date 2005-05-24 11:49:02 2005-05-24 11:55:24 2005-05-24 11:47:17					
Public Libraries are BLUE.	Subject: test comment Posted by: Michael Smith Date: 2005-05-24 11:47:17 test comment 1 Add new comments of your own									
Shared Libraries are GREEN. User Libraries are RED										
Post New Comment Rep		t Comments	Copy Comments to Clipb Rate Library Manager	oard	Help on This Interface					

Sharing comments helps build the community's knowledge of these reactions, and also enables consensus to be reached on difficult issues.

Personnel (FY05)

Nuclear Astrophysics Data

Michael Smith Jeff Blackmon Caroline Nesaraja * Zhanwen Ma Nengchuan Shu * Hiroyuki Koura Andy Chae Eric Lingerfelt Jason Scott * Carlos Ortiz * Rick Carroll * Richard Meyer

Staff Staff - Postdoc **Grad Student** Collaborator Collaborator Grad Student **Subcontractor** Subcontractor Undergrad Undergrad Consultant

Evaluations Evaluations Evaluations Evaluations Evaluations Mass Models (JAERI) Programming Programming Programming Programming (summer 05) Programming (summer 05) Program Development

Nuclear Structure Data

Murray Martin *David Radford Subcontractor Staff

Evaluations Evaluations

* can no longer be supported in FY06 due to budget cuts

Future Plans

- Evaluations:
 - Actinide A-chain
 - Reactions critical for Stellar Explosions studies
- continue expansion of extremely successful Computational Infrastructure for Nuclear Astrophysics suite of codes

aggressively recruit young scientist & students for summer projects

 vigorously seek additional funds to offset 20 % budget cut in FY06

• Actinide Evaluations will continue with focus on A=241-249

• Reactions needed to understand stellar explosions (novae & X-ray bursts) are being evaluated

• Continue improving and adding new features to the Computational Infrastructure to help users to evaluate & visualize latest experimental results, process & manipulate them into formats for astrophysical models and to run & visualize simulation