Covariances

T. Kawano, M.B. Chadwick

Covariance Data

Covariance data needed (by nuclear data users)

- Estimation of margins/uncertainties in :
 - neutron multiplicities, k_{eff} , for the next generation reactors, ADS, criticality safety
 - isotope productions, MA, LLFP, fertile/fissile
- Quantities sensitive to k_{eff}
 - Cross section (MF3)
 - Resonance parameters (MF2)
 - $\overline{\mu}$, P_1 for elastic scattering (MF4, MT2)
 - Prompt fission neutron spectrum (MF5, MT18)
 - u_p (MF1, MT456)

Evaluation Method

C.S. evaluated based on the experimental data

- Estimate a covariance by a Least-squares fitting to those measurements with GMA or SOK.
- Covariance of experimental data were re-constructed by evaluators.
- Examples σ_t , σ_f , σ_{2n} , $\overline{\nu}$, etc.

C.S. evaluated with a nuclear model

- Estimate the covariance with the KALMAN code.
- KALMAN calculates an error propagation from experimental data to the evaluated quantities though the covariance of model parameters.
- Examples: σ_t (if OM used), σ_{inel} , χ , Legendre-coeff., resolved/unresolved resonance parameters.

Basic Idea

Inter/Extrapolation of experimental uncertainties

- Calculate sensitivities of model parameters
- Estimate uncertainties in the parameters by experimental data
- Calculate uncertainties in the cross sections by the parameter uncertainties

Covariance Data obtained by Fitting

Generalized Least-squares Fitting

- Estimate uncertainties at each energy-gird and correlations among them.
 - GMA : moves an experimental energy point to the nearest energy-grid.
 - SOK : assumes that $\sigma(E)$ varies linearly or it is constant between two energygrids.
- No correlation if experimental data are uncorrelated.

Model Parameter Fitting

- Interpolation is made with some physical background.
- We believe that the model is "true."
- Correlation exists even if experimental data are uncorrelated.

Covariance Evaluation with the KALMAN code

includes

- Statistical / systematic errors in the experimental data.
 - correlation from the systematic errors
- Constraint by a physical model employed.
 - correlation from a model which is used for interpolation
- has advantages:
 - Inter/extra-polation of uncertainties to the region where no experimental data are available.
 - Deduction of uncertainties those can be obtained by calculations.

Covariance Evaluation for Gd Isotopes

We have generated covariance data for:

- Gd-152, 154, 155, 156, 157, 158, and 160, above resonance energy regions (LANL).
 - Total cross section
 - Neutron radiative capture cross section
 - Inelastic scattering cross section
 - Neutron emission reactions (n, 2n) and (n, 3n)
- Resonance parameters (ORNL).
 - Covariance of resonance parameters were generated with SAMMY

Covariance Evaluation for Gd Isotopes

Covariance Evaluation Methods

- Covariance of the total cross section was estimated using a Least-squares analysis of experimental data.
 - The L-S method was adopted for the natural element of Gd, was then used for all isotopes.
- Covariances of the neutron capture and inelastic scattering cross sections, obtained from nuclear theory, are evaluated with the KALMAN code — which calculates uncertainties in the cross sections with the Bayesian parameter estimation method.
 - The statistical Hauser-Feshbach model was used to calculate cross sections and their model parameter covariances.
- An approximated (but reasonable) method was used to estimate covariances of (n, 2n) reaction cross section, because they are less important for the criticality safety applications due to high-threshold energies.

Evaluated Uncertainties and Correlation

KALMAN Calculation for Neutron Capture

Correlation (Gd-155)

Evaluated Uncertainties and Correlation

SOK Calculation for Total C.S.

Resonance Parameter Covariances

- Few information about resonance analyses in ancient times is available.
- Generation of covariance data for existing libraries in a simple way.
 - Larson implemented "Retroactive Method" to estimate a covariance matrix of resonance parameters in SAMMY.

Retroactive Method

- Generate simulated experimental data calculate cross sections with the resonance parameters provided.
- Realistic energy points / resolution / background etc., assumed by taking old experiments (ORELA, for example) into account.
- Estimate / assume uncertainties for the simulated data
- Generate a resonance covariance so as to reproduce the simulated uncertainties.

SAMMY Output

- Standard ENDF/B-6 format, which can be processed with ERRORJ
- New "compact format", which also can be processed with ERRORJ now.

Combined Data

- Leal evaluated the covariance of resolved/unresolved resonance region for all isotopes, and combined with the high energy data of LANL. They were processed with NJOY and ERRORJ.
- Comprehensive tests have not been done yet.

Comparison with N.Larson's Retroactive Method

	JENDL	SAMMY Retroactive
Data point	averaged over several reso-	taken from typical experi-
	nances	ments
Resolution	N/A	taken from typical experi-
		ments
Uncertainties	inferred from real experi-	estimated from real experi-
	ments, but rounded into a	ments, can be rounded into a
	single value — 5% for exam-	single value
	ple	
Correction	N/A	Doppler broadening, multiple
		scattering
Sensitivity	sensitivity to the $\overline{\sigma}$	at each data point

In this study, we employ the RM/MLBW code, which was developed at the JENDL covariance evaluation, and "simulate" the SAMMY's retroactive method.

The Simplest Case

Gd-156 Capture Cross Section

If we assume that the uncertainty in σ_{capt} is 5%, 8.3% (=5/0.6) uncertainty in the Γ_{γ} will reproduce the 5% uncertainty.

Sensitivity, Resonance Energy

Relative Sensitivities of Resonance Energies

- Gd-156, resonance parameter (s-wave) taken from ENDF/B-VI
- The resonances at 33, 80, 151, 198, and 202 eV are included.

Sensitivity, Resonance Width

Neutron Width (upper), Gamma Width (lower)

Capture Cross Sections

Realistic Experimental Condition Taken from KURRI TOF

- A series of capture measurements for fission products in the resolved / unresolved range at Kyoto University
 - Neutron Time-of-Flight with 46-MeV LINAC (12.7m)
 - BGO scintillator
- Energy resolution (FWHM), 1 3%
- ToF data interval, \sim 100 points below 1 keV
- Sources of uncertainties for capture measurement, in the case of ⁹⁹Tc measurement
 - Statistical errors, about 3 10% (near resonances)
 - Normalization errors, about 6%
 - Corrections for background, self-shielding, multiple-scattering, about 2%
- Energy resolution and ToF data points, same as KURRI
- Uncertainties associated with experiments, 10% in capture cross section, with 50% correlation due to normalization

Gd-156 Cross Section Uncertainties (I)

If we can assume that capture measurements were carried out with the similar condition.

Total Cross Sections

Gd Resonance Analysis at BNL, Mughabghab and Chrien

- No experimental transmission data available.
 - Iow-energy run, \sim 100 eV / 1024 channels
 - high-energy run, \sim 1 keV / 1024 channels

Assumed Transmission Experiment

- Transmission data interval, $\delta E \sim 0.01 E_n$
- Energy resolution assumed to be 1%
- Data in the off-resonance region are not used
- Uncertainties associated with experiments, 10% in total cross section, with 10% correlation due to normalization

Gd-156 Cross Section Uncertainties (II)

Resonance Parameter Covariance

Covariance Matrix for the First 3 Resonances

0-E0	3.32E+01 0.012	1000			
0-Gn	1.46E-02 4.0	-197 1000			
0-Gg	9.00E-02 7.8	382 -718	1000		
1-E0	8.02E+01 0.011	1 -3	3	1000	
1-Gn	5.09E-02 3.8	16 18	20	-2 1000	
1-Gg	8.60E-02 15.4	-7 -9	-б	-70 -553 1000	
2-E0	1.51E+02 0.025	0 0	0	-1 -2 0 1000	
2-Gn	4.17E-02 4.8	5 11	6	6 11 7 -302 1000	
2-Gg	8.60E-02 16.0	-2 -2	-3	-3 -3 -3 359 -612 1000	
	Parameter	This work[%] N	Mughabghab and Chrien [%]	
	E(1)	0.012		0.006	
	$\Gamma_n(1)$	4.0		13	
	${\sf \Gamma}_\gamma(1)$	7.8		10	
	<i>E</i> (2)	0.011		0.009	
	$\Gamma_n(2)$	3.8		15	
	$\Gamma_{\gamma}(2)$	15.4		(10)	
	<i>E</i> (3)	0.025		1.1	
	$\Gamma_n(3)$	4.8		29	
	$\Gamma_{\gamma}(3)$	16.0		(10)	

Covariance Generation with SAMMY

- This study was carried out with Kawano's RM/MLBW code and the KALMAN code.
- Numerical derivative technique was used.
- Our goal is to use the SAMMY code, and repeat this:
 - SAMMY calculates derivatives ($\partial \sigma / \partial p$) analytically.
 - SAMMY generates resonance parameter covariances in the existing ENDF-6 format or "compact format."
 - Test of the resonance covariance with ERRORJ is straightforward.

Data processing (Resonance Part)

ERRORJ (Go Chiba, JNC)

- The ERRORJ code that processes Reich-Moore covariance data can be used with NJOY, AMPX, and PUFF-2 data processing systems.
- ERRORJ can read the compact covariance format generated by SAMMY.
- The code has been distributed to Sumitomo Atomic Energy Industries, JAERI Nuclear Data Center, JAERI ADS Project, Toshiba, ORNL, ANL, LANL, NEA Dababank, and IPPE.
- NJOY (R.E. MacFarlane, LANL)
 - Larson provided a subroutine that calculates derivatives of R-matrix theory (not numerical but analytical). This subroutine will be incorporated into NJOY to process resonance covariances.
- SAMMY (N. Larsoon, ORNL)
 - SAMMY is not a processing code !) but it also has a capability to generate group-averaged cross sections and their covariance. This would help us to check the generated group constant covariance.

Concluding Remarks

- Covariance evaluation tools available
 - KALMAN Bayesian parameter estimation
 - The KALMAN code can be combined with Hauser-Feshbach statistical codes — CoH, GNASH, EMPIRE, TALYS
 - SOK Least-squares fitting
 - GMA, GLUCS
 - SAMMY
 - Retroactive method to estimate covariances of resonance parameters
- Processing code
 - NJOY (LANL)
 - ERRORJ (JNC)

