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Bl Covariance Data

Covariance data needed (by nuclear data users)

® Estimation of margins/uncertainties in :
® neutron multiplicities, kqff, for the next generation reactors, ADS, criticality safety

® isotope productions, MA, LLFP, fertile/fissile

® Quantities sensitive to kofr
® Cross section (MF3)
® Resonance parameters (MF2)
® 7, P; for elastic scattering (MF4, MT2)
® Prompt fission neutron spectrum (MF5, MT18)
® ., (MF1, MT456)
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| Evaluation Method

C.S. evaluated based on the experimental data

® Estimate a covariance by a Least-squares fitting to those measurements with GMA
or SOK.

® Covariance of experimental data were re-constructed by evaluators.

® Examples — o4, 04, 02y, 7, €fC.
C.S. evaluated with a nuclear model

@ Estimate the covariance with the KALMAN code.

® KALMAN calculates an error propagation from experimental data to the evaluated
guantities though the covariance of model parameters.

® Examples: — o} (if OM used), oinel,» X, Legendre-coeff., resolved/unresolved reso-
nance parameters.
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| Basic Idea

Inter/Extrapolation of experimental uncertainties

@ calculate sensitivities of model parameters
® Estimate uncertainties in the parameters by experimental data
@ cCalculate uncertainties in the cross sections by the parameter uncertainties

A . A

Normalize Here




Bl Covariance Data obtained by Fitting

Generalized Least-squares Fitting

® Estimate uncertainties at each energy-gird and correlations among them.
® GMA : moves an experimental energy point to the nearest energy-grid.

® SOK : assumes that o(E) varies linearly or it is constant between two energy-
grids.

® No correlation if experimental data are uncorrelated.
Model Parameter Fitting

® Interpolation is made with some physical background.

® e believe that the model is “true.”

@ Correlation exists even if experimental data are uncorrelated.
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| KALMAN Calculation

Covariance Evaluation with the KALMAN code

® includes

@ Statistical / systematic errors in the experimental data.

correlation from the systematic errors

@ Constraint by a physical model employed.
correlation from a model which is used for interpolation

® has advantages:

@ Inter/extra-polation of uncertainties to the region where no experimental data
are available.

® Deduction of uncertainties those can be obtained by calculations.
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Bl Covariance Evaluation for Gd Isotopes

We have generated covariance data for:

® Gd-152, 154, 155, 156, 157, 158, and 160, above resonance energy regions (LANL).
® Total cross section
® Neutron radiative capture cross section
@ |nelastic scattering cross section
® Neutron emission reactions — (n, 2n) and (n, 3n)

® Resonance parameters (ORNL).

® Covariance of resonance parameters were generated with SAMMY
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| Covariance Evaluation for Gd Isotopes

Covariance Evaluation Methods

@ Covariance of the total cross section was estimated using a Least-squares analysis
of experimental data.

® The L-S method was adopted for the natural element of Gd, was then used for
all isotopes.

® Covariances of the neutron capture and inelastic scattering cross sections, obtained
from nuclear theory, are evaluated with the KALMAN code — which calculates un-
certainties in the cross sections with the Bayesian parameter estimation method.

@ The statistical Hauser-Feshbach model was used to calculate cross sections
and their model parameter covariances.

® An approximated (but reasonable) method was used to estimate covariances of
(n,2n) reaction cross section, because they are less important for the criticality
safety applications due to high-threshold energies.
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Bl Evaluated Uncertainties and Correlation

KALMAN Calculation for Neutron Capture
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Bl Evaluated Uncertainties and Correlation
SOK Calculation for Total C.S.

Errors Correlation
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| Resonance Parameter Covariances

® Few information about resonance analyses in ancient times is available.

@ Generation of covariance data for existing libraries in a simple way.
® Larson implemented “Retroactive Method ” to estimate a covariance matrix of
resonance parameters in SAMMY.

Retroactive Method

® Generate simulated experimental data — calculate cross sections with the reso-
nance parameters provided.

® Realistic energy points / resolution / background etc., assumed by taking old exper-
iments (ORELA, for example) into account.

Estimate / assume uncertainties for the simulated data

Generate a resonance covariance so as to reproduce the simulated uncertainties.

/‘\
» Los Alamos



Bl Resonance Parameter Covariances
SAMMY Output

® Standard ENDF/B-6 format, which can be processed with ERRORJ
® New “compact format”, which also can be processed with ERRORJ now.
Combined Data

® |eal evaluated the covariance of resolved/unresolved resonance region for all iso-
topes, and combined with the high energy data of LANL. They were processed with
NJOY and ERRORJ.

® Comprehensive tests have not been done yet.
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| JENDL-3.2/3.3 Resonance Covariance Evaluation

Comparison with N.Larson’s Retroactive Method

JENDL SAMMY Retroactive
Data point averaged over several reso- | taken from typical experi-
nances ments
Resolution N/A taken from typical experi-
ments

Uncertainties

inferred from real experi-
ments, but rounded into a
single value — 5% for exam-

estimated from real experi-
ments, can be rounded into a
single value

ple
Correction N/A Doppler broadening, multiple
scattering
Sensitivity sensitivity to the & at each data point

In this study, we employ the RM/MLBW code, which was developed at the JENDL co-

variance evaluation, and “simulate” the SAMMY’s retroactive method.

A
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Bl The Simplest Case
Gd-156 Capture Cross Section
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If we assume that the uncertainty in oqqy: IS 5%, 8.3% (=5/0.6) uncertainty in the I will
reproduce the 5% uncertainty.
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Bl Sensitivity, Resonance Energy

Relative Sensitivities of Resonance Energies

® Gd-156, resonance parameter (s-wave) taken from ENDF/B-VI

® The resonances at 33, 80, 151, 198, and 202 eV are included.
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Bl Sensitivity, Resonance Width

Neutron Width (upper), Gamma Width (lower)

Total Capture
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| Capture Cross Sections

Realistic Experimental Condition Taken from KURRI TOF
® A series of capture measurements for fission products in the resolved / unresolved
range at Kyoto University
® Neutron Time-of-Flight with 46-MeV LINAC (12.7m)
® BGO scintillator

® Energy resolution (FWHM), 1 — 3%
ToF data interval, ~ 100 points below 1 keV

® Sources of uncertainties for capture measurement, in the case of °°Tc measure-
ment

@ Statistical errors, about 3 — 10% (near resonances)
® Normalization errors, about 6%
® Corrections for background, self-shielding, multiple-scattering, about 2%

® Energy resolution and ToF data points, same as KURRI
® Uncertainties associated with experiments, 10% in capture cross section, with 50%
correlation due to normalization
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Bl G&Gd-156 Cross Section Uncertainties (1)

If we can assume that capture measurements were carried out with the similar condition.
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| Total Cross Sections

Gd Resonance Analysis at BNL, Mughabghab and Chrien

® No experimental transmission data available.
® |ow-energy run, ~ 100 eV / 1024 channels

@ high-energy run, ~ 1 keV / 1024 channels
Assumed Transmission Experiment

® Transmission data interval, §E ~ 0.01E,,
® Energy resolution assumed to be 1%
® Data in the off-resonance region are not used

® Uncertainties associated with experiments, 10% in total cross section, with 10%
correlation due to normalization
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Bl G&Gd-156 Cross Section Uncertainties (Il)
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Bl Resonance Parameter Covariance

Covariance Matrix for the First 3 Resonances

0-EO
0-Gn
0-Gg
1-EO
1-Gn
1-Gg
2-EO
2-Gn
2-Gg

3.32E+01 0.012
1.46E-02 4.0
9.00E-02 7.8
8.02E+01 0.011
5.09E-02 3.8
8.60E-02 15.4
1.51E+02 0.025
4.17E-02 4.8
8.60E-02 16.0

Parameter

E(1)
(1)
(1)
E(2)
M (2)
M (2)
E(3)
Mn(3)
M (3)

-197 1000
382 -718 1000

-3 3 1000
18 20 -2 1000
-9 -6 -70 -553 1000
0 o -1 -2 0 1000
11 6 6 11 7 -302 1000
-2 -3 -3 -3 -3 359 -612 1000

This work[%] Mughabghab and Chrien [%)]

0.012 0.006
4.0 13
7.8 10

0.011 0.009
3.8 15
15.4 (10)

0.025 1.1
4.8 29

16.0 (10)
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Bl Covariance Generation with SAMMY

® This study was carried out with Kawano’'s RM/MLBW code and the KALMAN code.
® Numerical derivative technique was used.

® our goal is to use the SAMMY code, and repeat this:
® SAMMY calculates derivatives (9o /9p) analytically.

® SAMMY generates resonance parameter covariances in the existing ENDF-6
format or “compact format.”

@ Test of the resonance covariance with ERRORJ is straightforward.
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| Data processing (Resonance Part)

® ERRORJ (Go Chiba, JNC)

® The ERRORJ code that processes Reich-Moore covariance data can be used
with NJOY, AMPX, and PUFF-2 data processing systems.

® ERRORJ can read the compact covariance format generated by SAMMY.

® The code has been distributed to Sumitomo Atomic Energy Industries, JAERI

Nuclear Data Center, JAERI ADS Project, Toshiba, ORNL, ANL, LANL, NEA
Dababank, and IPPE.

® NJOY (R.E. MacFarlane, LANL)

@ Larson provided a subroutine that calculates derivatives of R-matrix theory (not
numerical but analytical). This subroutine will be incorporated into NJOY to
process resonance covariances.

® SAMMY (N. Larsoon, ORNL)

® (SAMMY is not a processing code !) but it also has a capability to generate
group-averaged cross sections and their covariance. This would help us to
check the generated group constant covariance.
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Bl Concluding Remarks

@ covariance evaluation tools available

® KALMAN — Bayesian parameter estimation

The KALMAN code can be combined with Hauser-Feshbach statistical codes
— CoH, GNASH, EMPIRE, TALYS

® SOK — Least-squares fitting
® GMA, GLUCS
® SAMMY

Retroactive method to estimate covariances of resonance parameters

® Processing code
® NJOY (LANL)
® ERRORJ (JNC)
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