Status of ENDF/B Decay Data

W.B. Wilson Los Alamos National Laboratory

CSEWG November 3-4, 2004 BNL

Decay Data

ENDF/B decay data focus largely on nuclides produced in reactors.

Charles Reich at INEL, Tal England at LANL, and Junichi Katakura of JAERI while working with Tal for a year at LANL.

Reich improved or introduced evaluations for a large number of nuclides.

England and Katakura augmented data suffering the *Pandamonium Effect,* using continuous spectra from results of gross theory of beta decay (GT) calculations, as well as companion models of Yoshida et al. for gamma de-excitations.

Decay Data

These were used to provide $\beta^{\text{-}}$ and γ spectra for a large number of fission-product nuclides .

Aggregate β^{-} and γ spectral benchmarking was improved greatly using ENDF/B-VI spectra.

A specific effort to improve β^- -delayed neutron emission and spectra is described in a subsequent presentation.

LA-UR-98-4208 (ENDF-359)

Title:	Beta ray spectra of fission product nuclides in ENDF/B-VI file
Author(s):	J. Katakura & T. R. England

Comparisons of b- spectra with measured + modeled data

Spectra for U235t Equilibrium fission

Energy, MeV

LA-12125-MS ENDF-352

UC-413 Issued: November 1991

Augmentation of ENDF/B Fission Product Gamma-Ray Spectra by Calculated Spectra

J. Katakura* T. R. England

Example of modeled γ spectrum

'). Fig. 8. Calculated energy spectrum of ⁷⁸Ni decay (Q=10.1 MeV).

Example of model-supplemented γ spectrum

Fig. 13. Measured and modified energy spectra of 98 Sr decay (Q₀₀=0.00).

Aggregate γ Spectrum Comparison with Dickens Measurement <3 MeV

Fig. A-6. Gamma spectrum after ²⁴¹Pu thermal neutron fission ($T_{irrad.} = 1.0 \text{ sec}$, $T_{cool.} = 2.2 \text{ sec}$) (to 3 MeV).

Aggregate γ Spectrum Comparison with Dickens Measurement, < 8MeV

Fig. A-5. Gamma spectrum after ²⁴¹Pu thermal neutron fission ($T_{irrad.} = 1.0 \text{ sec}$, $T_{cool.} = 2.2 \text{ sec}$) (to 8 MeV).

ENDF/B-VII and Beyond

Encouraging decay evaluation work described at APS-DNP meeting

- Alan Nichols, IAEA
- Tuli +, NNDC
- Smith +, ORNL

Data survey needed

Improve, complete the individual nuclide β^- spectra with modeled E_0

- Gross Theory extensions
- Moller β^- data model H-L, branchings, spectra
- Evaluation of cascades