LA-UR-04-7667

Nuclear Data Experiments at LANSCE: Highlights

Robert C. Haight Los Alamos National Laboratory

Cross Section Evaluation Working Group Meeting US Nuclear Data Program Meeting Brookhaven National Laboratory November 2-5, 2004

Nuclear data measurements at LANSCE are made with several instruments

DANCE (n,y)

N,Z (n,charged particle)

Fission

Other: (p,X)

Double Frisch-grid fission chamber; also standard fission ion chamber

Nuclear data experiments at LANSCE use neutrons at three locations: Lujan Center, Target 2 and Target 4.

GEANIE (n,x γ)

Recent & planned GEANIE neutron-induced gammaray cross-section measurements at LANSCE/WNR

 \sim 1 MeV < E_n < 200 MeV

- ^{191,193}Ir(n,n'γ), (n,xnγ), and (n,pxnγ) results ND2004
- ¹⁹⁷Au(n,n'γ), (n,xnγ), and (n,pxnγ) results APS DNP 10/2004
 - New levels and γ 's obtained for ^{191,3}Ir and ¹⁹⁷Au
- ¹⁰⁰Mo(n,xγ) analysis starting
- ¹³⁰Te(n,xγ) analysis starting
- 70,72,74 Ge(n,x γ) analysis starting (with INEEL)
- ^{nat}Cr + ^{nat}V relative, for secondary cross section standards
- natCr + natFe same as above results ND2004
- ⁴⁸Ti(n,xγ) dissertation D. Dashdorj (NCSU/LLNL)
- ¹⁵⁰Sm(n,2nγ) reported (UCRL-TR-205760)
- Planned Samples: ¹²⁴Sn, ¹³⁸Ba, ¹⁷⁰Er, ¹⁸⁶W, ²³³U

New GEANIE data significantly improve the ¹⁹³Ir(n,n')^{193m}Ir cross section database

Recent Fe(n,n' γ) E_{γ} = 847 keV relative and absolute measurements at E_n = 14.5 MeV agree with JEFF 3.0

GEANIE

LLNL/LANL

Left – Absolute cross sections using ²³⁸U(n,f) to measure the neutron fluence & cross sections measured relative to ⁵²Cr(n,n'γ) agree well, but are ~8% larger than ENDF

• Los Alamos

 Right – Blue curve shows lowering the ENDF
 ⁵⁶Fe Elastic scattering cross section by 8% of the inelastic cross section (preserving the total) gives better agreement with elastic scattering data.

SCIENCE

Recent GEANIE (Dashdorj) results for ⁴⁸Ti(n,n' γ) agree fairly well with the JENDL 3.3 evaluation

⁴⁸Ti(n,n' γ) E_{γ} = 983 keV, 2⁺ - 0⁺

FIGARO (n,xn+γ)

Present and future experiments at FIGARO/WNR: neutron-emission spectra and v-bar in fission

 $1 \text{ MeV} < \text{E}_{\text{n}} < 200 \text{ MeV}$

Fission Chamber in beam

- ²³⁸U(n,f): <E_{fn}>
- ^{235,238}U(n,f): E_{fn}, v-bar
- ²³⁵U(n,f): E_{fgamma}
- ²³⁷Np(n,f): E_{fn}, v-bar

Ethvignot, Phys. Lett. B Ethvigot, paper submitted on v-bar R. Nelson, in progress next run cycle

Gamma-ray trigger (HPGe or BaF2)

- Si(n,n'gamma)
- ^{58,60}Ni(n,n'gamma)
- ⁹⁹Tc, ²⁰⁸Pb

Rochman et al. NIM 523, 102 (2004)

- ND2004 contribution
- In progress

The fission neutron spectrum varies with incident neutron energy

Agreement with Los Alamos Model is good below 20 MeV

Neutron emission from neutron reactions is studied as a function of incident neutron energy

We compare our results with GNASH and EMPIRE calculations

Model-Measurement Comparison for Ni(n,n'γ)

N,Z = (n,charged particle) cross sections

We measure proton, deuteron and alpha-particle production cross sections for the Advanced Fuel Cycle Initiative

1 MeV < En < 100 MeV

- $^{nat}Fe(n,xp) + (n,x\alpha)$ Haight, ANS November 2004
- In progress:
 - Cr(n,xp) + (n,xα)
 - Ta(n,xp) + (n,xα)

Goal is to determine, e.g. helium production / dpa for accelerated radiation damage analysis

New LANSCE data differentiate among evaluations

DANCE (n, γ)

DANCE Progress 2003 - 2004

Stable Targets:

- ¹⁹⁷Au (well-studied standard)
- •¹³⁹La,⁴⁵Sc,⁵⁵Mn,⁵⁹Co,Cu,V,Rb,Sr (Gaps in s-process)
- ¹⁰²Pd (rp process)
- ⁶²Ni ("weak" s-process puzzle)
- ^{151,153}Eu rad-chem diagnostics

Radioactive Targets

- ²³⁷Np AFCI
- ^{234,235,236,238}U Known standards and defense programs
- ¹⁵¹Sm Key s-process branch (largely completed)

²³⁷Np(n,γ) Preliminary Analysis

Existing data above 1 keV discrepant

Test measurements with a fission-tagging detector

- Study:
 - Fission-to-capture ratios ("alpha")
 - Gamma emission following fission
- "Proof-of-principle" experiment used "thin" ²³⁵U depost on silicon solar cell
 - (T. Ethvigniot, et al.)

SCIENCE

•Future: Develop thin gas fission chamber

DANCE Plans 2004 - 2005

Stable Targets:

- ^{151,153}Eu rad-chem diagnostic
- ^{72,73,74}Ge, ⁷⁵As. ^{76,77,78,80}Se, ^{54,56,57,58}Fe

(Capture cross sections with better accuracy for s-process studies)

Radioactive Targets

- ^{240,244}Pu AFCI and defense programs
- ¹⁴⁷Pm s process branch target irradiated, needs chemistry
- ¹⁷¹Tm, ¹⁵⁵Eu rad-chem diagnostics, target irradiated, needs chemistry

Development

- Improved hardware handshaking between distributed computers
- Further work on resolution and backgrounds
- Further development of "continuous" data acquisition
- Faster distributed computers, wider-range continuous mode
- Ge detector in concidence for fission studies (??)
- Fission-tagging detector for capture/fission and fission gammas
- Improved neutron monitors more efficient ⁶LiH, ²³⁵U fission chmbr

Astrophysical neutron-capture reactions studied at DANCE include the following:

¹⁵¹ Sm	 radioactive branch s-process point 0.5 mg
¹³⁹ La, Rb, Sr	 closed n-shells integrated neutron flux during s-process s/r ratio in metal poor stars uniqueness of r-process integrated neutron flux during s-process
⁶² Ni	 stable only 25 % of MACS from resonances until recently: 75% had to rely on theory
¹⁰² Pd	 stable (n,γ) – (γ,n) equilibrium during p-process

• sample only 80% enriched

Lead Slowing-Down Spectrometer (n,f)

A Lead Slowing-Down Spectrometer is under development, driven by 800 MeV protons from the PSR

Neutron trajectories following the interaction of 1 proton with the tungsten target in the lead cube

CIENCE

Lead Slowing-Down Spectrometer: To measure fission cross sections of ultra-small samples

- Effort motivated by interest in measuring the fission cross section of isomers and small samples of actinides
- Calculations show that cross section for ^{235m}U is significantly different than for ground state
- Experiments are in collaboration with LLNL, RPI and CEA/DAM

- 235mU
 - 26 min half-life
 - 73eV
 - Decays by internal conversion
 - 99% of 239Pu decays populate
 ^{235m}U
 - 5 gm of Pu will produce 10ng of ^{235m}U
- Fast extraction of ^{235m}U will be required
- To measure this small cross section, it is necessary to increase the neutron flux by using a lead-slowing down spectrometer (LSDS)

SCIENCE

We have characterized the time-energy correlation and measured the resolution in capture resonances

ANS®

OSCIENCE

• Los Alamos

With the LSDS, we have measured the neutron-induced fission cross section on ²³⁹Pu section with sub- μ g samples

Measuring fission cross sections with double Frisch-grid fission ionization chamber is a new initiative

- Data for the Advanced Fuel Cycle Initiative
- Preliminary data ²³⁷Np (standard fission chamber)
- FY 05: ²³⁷Np, ^{240, 242}Pu with Frisch-grid chamber
- People:
 - Tony Hill
 - Fredrik Tovesson
 - F.-J. Hambsch

The double Frisch-grid fission ionization chamber allows good identification of fission

Both fission fragments are detected with Z and A resolution

Apparatus from F.-J. Hambsch, IRMM

Preliminary measurement of ²³⁷Np fission cross section has been made with parallel-plate ionization chamber.

- Thesis of Karen Corzine Kelley, Georgia Tech
- Focus on ¹⁴⁸Gd (alpha emitter) produced in LANSCE targets by proton beam on tungsten
- Many other radionuclides also measured

W(*p*,*x*)¹⁴⁸Gd production cross section — Previous predictions and measurements for W

Cumulative ¹⁴⁸Gd production cross section measurements

				cumulative ¹⁴⁸ Gd production cross section (mb)				
	Target	Energy	Foil	Current	Previous	Theor	etical	
		(MeV)	Setup	Measurement	Measurement	CEM2k+GEM2	Bertini	
	– Ta	600	stacked	15.2±4.0		29.4±0.2	15.5±0.2	
			stacked	29.7±7.6				
		800	single	27.6±1.7		45.6±0.3	24.4±0.3	
			single	28.6±7.3				
	w	600	stacked	8.31±0.92		21.6±0.3	10.9±0.2	
			stacked	19.5±1.2				
		800	single	18.0±1.1	16.4±0.8	41.4±0.4	20.9±1.6	
			single	20.7±5.3				
	Δ	600	stacked	0.591±0.155		1.41±0.04	0.929±0.049	
	Au	800	stacked	3.86±0.98	3.74±0.19	12.9±0.1	7.23±0.14	
		800	single	3.52±0.22				

W(*p*,*x*)¹⁴⁸Gd production cross section — Previous predictions and measurements for W

Other radionuclide production cross section measurements: 800 MeV p + W

		cumulative production cross section (mb)						
	t _h	current	previous measurements		theoretical			
	(d)	measurement	Titeranko	Henry	CEM2k+GEM2	Bertini		
I-126	13.11	0.599±0.063			0.00±0.00	0.035±0.010		
Eu-145	5.93	11.1±0.7	11.39±0.46		23.9±0.3	16.8±0.2		
Eu-147	23.96	19.5±0.6	18.44±0.82	18.8±1.0	26.2±0.3	18.9±0.2		
Gd-149	9.38	19.8±0.5	21.72±0.98		29.1±0.3	19.9±0.2		
Gd-153	241.60	22.9±0.9	25.34±1.23		24.7±0.3	24.1±0.3		
Yb-169	32.01	53.2±1.5	59.89±2.25	57.1±1.7	38.4±0.4	40.5±0.3		
Lu-171	8.24	60.0±3.7	59.70±2.12		37.3±0.4	41.7±0.3		
Lu-173	499.69	52.3±1.4	61.66±3.09	55.3±2.4	37.9±0.4	44.7±0.3		
Hf-172	682.40	41.1±2.9	48.91±2.80	43.9±2.2	34.5±0.4	34.1±0.3		
Hf-175	70.00	49.3±1.4	56.04±2.13	53.2±2.1	35.2±0.4	39.9±0.3		
Hf-181	42.40	1.11±0.04		1.4±0.1	0.434±0.044	2.18±0.08		
Ta-182	115.00	12.2±0.2	16.95±0.85	13.0±0.4	8.07±0.19	14.9±0.2		
Re-184	37.96	1.34±0.05		1.5±0.1	2.07±0.10	1.50±0.06		

We address the needs of LANSCE sponsors

- National Nuclear Security Administration
 - Program in radchem cross section measurements
 - » Neutron capture cross sections on radioactive targets (DANCE)
 - » Cross section measurements on high-order (n,2n), (n,xn) reactions (GEANIE)

Program in neutron-induced fission measurements

- » Fission product distributions (GEANIE)
- » Energy output in fission: neutron and γ -ray spectra (FIGARO)
- » Nuclear properties of fission products and isomers (GEANIE and FIGARO)

Office of Nuclear Energy

- Measurements in support of the AFCI program include:
 - » Capture and fission cross section on actinides
 - » Gas production: (n,p), (n, α) reactions in structural materials

Office of Science

- Support of SNS in understanding pulsed radiation effects on liquid mercury targets
- Fundamental physics experiments and nuclear data

National Resource

- Nuclear science User Facility for defense, basic and applied research
- Industrial testing of semiconductor devices in neutron beams
- University research in nuclear science

The LANSCE program in nuclear data involves many laboratories

- GEANIE LANL, LLNL, Bruyères-le-Châtel, NC State
- FIGARO LANL, Bruyères-le-Châtel
- N,Z LANL, Ohio U
- DANCE LANL, LLNL, ORNL, Colorado School of Mines, FZK Karlsruhe
- LSDS LANL, LLNL, Bruyères-le-Châtel, RPI
- Proton LANL, Georgia Tech
- Others MIT, Kentucky, Kyushu, Harvard,...

