
UCRL-PRES-207437

New Nuclear Data Format

Towards a richer representation

Jason Pruet, Dennis McNabb & Scott McKinley

This work was performed under the auspices of the US Department of Energy by University of California Lawrence
Livermore Laboratory under contract W-7405-ENG-48.

Overview
• Introduction

– Working with data
• Importance of structures used to represent data

– Simple example
– Note on nuclear data
– Benefits of using rich structures

• Writing the data down
– XML as a promising choice

• Working example: Pointwise data
• Summary: What does a richer representation have

to offer the nuclear data community?

Three parts to working with data

Writing &
storing
data

Accessing,
processing,
computing
with data

Structures
representing
data

Three parts to working with data

Impacts whether problem is soluble:

• QM Scattering:
• Path integrals (hard)
• Schrodingers equation (easy)

• CM Orbits:
• Lagrangian
• Force diagram

Structures
representing
data

Writing &
storing
data

Accessing,
processing,
computing
with data

Three parts to working with data

Binary vs. ascii vs. graphs vs. …

Writing &
storing
data

Accessing,
processing,
computing
with data

Structures
representing
data

Three parts to working with data

• Relational vs. hierarchical vs. collection
• Transport vs. presentation
• Object-oriented vs. FORTRAN vs. ??

Writing &
storing
data

Accessing,
processing,
computing
with data

Structures
representing
data

In general different structures can represent data

Example: Differential cross section data

E, θ, σ

Choice 1)

a number: doesn’t work

In general different structures can represent data

Example: Differential cross section data

E, θ, σ

Choice 2)
a matrix: e.g. a FORTRAN array

1 0 1
1 90 2
2 0 1

Interpretation rule: first column is E,
2nd is theta, third is sigma.

In general different structures can represent data

Example: Differential cross section data

E, θ, σ

Choice 3) a simple tree

1 2

90 0

12

rule: daughter of root is E,
daughter of E is theta, daughter
of theta is sigma.

root

2

0

In general different structures can represent data

Example: Differential cross section data

E, θ, σ

Choice 4) Tree with named nodes

<T=0>

Rule: ‘E’ means E
‘T’ means theta
‘S’ means sigma

each lowest node
corresponds to a triplet<E=2>

<E=1> <S=1>

<S=1>

<T=0> <T=90>

<S=2>

root

In general different structures can represent data

Example: Differential cross section data

E, θ, σ

Choice 5) More complicated things

<E=1> <S=1>

<T=0>
….

rule: ?

Choice of data structure can be critical --
Determines how easy it is to work with data
Example: Extend the simple database described before.

Extension 1) Add uncertainties to the cross section

ii) Tree with named nodes: Add a tag name

<E=1> <S=1>

<S=1>

<T=0><T=90> <T=0>

<E=2><S=2>

root

<U=4> <U=4>

Rule change: ‘U’
means uncertainty of
parent node

i) Matrix representation: Add another column

1 0 1 4
1 90 2 4
2 0 1 -1

Rule change: fourth column is uncertainty
-1 means no uncertainty present

Choice of data structure can be critical --
Determines how easy it is to work with data
Example: Extend the simple database described before.

Extension 2) Allow upper and lower uncertainties

i) Matrix: Add two columns
Rule change:

5th column is lower uncertainty,
6th is upper uncertainty

ii) Tree w/ named nodes: Add two tags
Rule change:

‘LU’ -> lower uncertainty of parent node
‘RU’ -> upper uncertainty of parent node

Choice of data structure can be critical --
Determines how easy it is to work with data
Example: Extend the simple database described before.

Extension 3) Let all quantities have uncertainties…
and let these uncertainties have uncertainties

ii) Tree w/ named nodes: No changei) Matrix: Add 27 columns
Rule change:

… column 10 is the lower uncertainty of the
upper uncertainty of the energy …
… column 27 is the upper uncertainty of the
lower uncertainty of the cross section

Rule change: none

Data representation should allow archivists to:

• Choose structures needed to best represent data
• Determine when data is valid

– Conforms to definition of the structures

• Specify relationships between structures

Current representations are flat -
Context-sensitive, dictionary-interpreted character stream

header

Block
Data

xxxyxxx

Data File Dictionary

y here means
Q value human

reads dictionary
computer

Advantages and disadvantages
of current fixed-format approach

Advantages Disadvantages

• Very compact
• Fast I/O
• Useful for non-object oriented

programming
• Enforces rigid definitions

• Rich structure hard to describe
• Significance is encoded by

humans reading dictionaries
• Burden is on processing codes

– Data doesn’t describe
processing

– Expert knowledge of best class
structure is lost

• Changing data breaks
processing codes

If we move to a richer representation, how
do we actually write or store the data?
Goodness criteria:
• Widely supported
• Easily parsed by codes if not humans
• Well studied

– Method allows easy representation of complicated structures

Some possibilities are:
• Bagpipe recordings
• Shelved object instances (python or C++ or …)
XML: a rich language for describing and defining data structures

Shelved Object Instances --
Advantages and Disadvantages

• Benefits:
– Already in computer form
– Extremely rich

• Disadvantages
– Not readily communicated
– Ties us to a specific language

This is probably the future --
But lack of a standard is problematic

Disadvantages to an XML-based approach

• Hard to fit on punch cards
• Memory and processor intensive
• Deciding on the structure for the

representation takes work

• Lots of work needed for such a change

Advantages to an XML-based approach
• “Self describing”

• Does a good job of representing a wide variety of complicated structures
• Supported and used by thousand of programmers

– All major programming languages and web browsers.
• Many useful XML-tree related tools. For example, one line of code will:

– Pick out all q_value nodes
– Re-order all nuclei in the database by decreasing A
– Get all nuclei that have n,2n reaction data available

<nucleus>
<Z> 10 </Z>
<N> 20 </N>
<mass value=“30.2” units=“amu”/>
<level>

<J value=“0” units=“unitless”/>
<pi value=“+” units=“unitless”/>

</level>
</nucleus>

Markup languages, particularly XML are supported standards

Conversion from object instances to XML to

human-readable forms is straightforward

Close relationship between tree-structures and simple classes
I) Next best thing to having shelved

object instances.
II) Humans can’t really parse complicated trees.

Example: A=[x,y,z]
x=[‘a’,1,j]
y=82
z={‘Bob’:’555-1211’}
j=‘energy’ ‘cross-section’

1 5 barns

We can tell what this
means and easily write it.

Computers can
easily work with this

Working example

Motivated by LLNL transport code needs
• Propagate uncertainties in data
• Use data represented as functions
• Fix a few format-imposed inconsistencies

A first draft that includes uncertainties and
pointwise data has been made

How structures are represented

i + T final reaction

Ambient:
temperature
(density, B?)

reactionDescription:
name(e.g. ‘n,2n’)
quantityDescribed(e.g. ‘angularDistribution’)
columnDescription (e.g. c1=‘incidentEnergy’ ,…)
reactionData={pointwise | functional}

finalConfiguration:
residualNucleus
constraints (e.g. E_gamma=4 MeV, …)

……

Reaction:
incident={particle | nucleus}
target={particle | nucleus | mixture}
final=finalConfiguration
ambient
reactionDescription

Particle:
name(e.g. ‘neutron’)

Nucleus:
Z
N
mass
life
excitationState={level | thermal |

continuum | preEquilibrium}

Example of pointwise data in XML

…

XML as seen by a
web browser
(i.e. node names changed
to html tag names)

…

Benefits to the wider community -- An
appeal for collaborators on this project

• Concepts needed to represent nuclear data
• Relationships between these concepts

With the switch to an XML based representation
the nuclear data effort could concentrate on:

While spending very little time on :

• Formatting data
• Accessing data
• Viewing data
• Modifying existing data
• Transmitting data
• Updating formats

Summary
• Choice of ideas (structures, classes, containers …) is very important

– Often the most overlooked aspect of data representation.
• Excellent tools available for representing rich and complicated data

structures
– XML may be the most promising of these
– Limitations that historically required flat dictionary-interpreted files are gone

• We have implemented a first version of a new format
• Community-wide effort aimed at developing a structure-based approach

to nuclear data offers a lot of promise.
– Writing processing codes very easy.
– Data would be more broadly understandable.
– Revisions would be simple
– Representation of new kinds of data less painful.
– Our data effort would be brought under the purview of the work of thousands

of excellent programmers. They have already done the work of figuring out
how tree-like structures are to be displayed, how to efficiently ‘prune’ trees,
how certain kinds of data are best represented, …

