Proposal for ENDF formats that describe emission of post-fission β-delayed photons

David Brown, Jason Pruet, Gerry Hedstrom, James Hall (N-Division, LLNL) and Marie-anne Descalle (M-Division, LLNL)

Why delayed γ 's from fission?

Homeland security: Detection of fissile material in sea-going cargo containers via detection of beta-delayed gamma-rays.

Assume active neutron interrogation techniques that rely on detection of post-fission β -delayed γ -rays.

Long cascade ensures many timescales for individual gammas

With keV resolution, see many γ 's

Can approximate γ spectrum w/ continuous representation only w/ dramatic loss in resolution

Define γ **source function**

 $s_{\gamma}(E, E_{\gamma}, t) \equiv \frac{d^2 n_{\gamma}}{dt dE_{\gamma}}(E, E_{\gamma}, t). = \text{probability per unit time per unit energy after fission event, photon is emitted at time t with energy <math>\varepsilon_{\gamma}$

There are different ways to represent s_{γ} . One is similar to the way delayed neutrons are represented (coarse energy bins):

Discrete Representation

$$s_{\gamma}(E,E_{\gamma},t) = \sum_{i=1}^{NG} \delta(E_{\gamma}-E_i) y_i(E) T_i(t).$$

Discrete Representation (LO=1)

The following quantities are defined:

s.
5

- NR, NP, t_{int} Standard TAB1 parameters.
- $T_i(t)$ Time dependence of the ith photon's multiplicity (sec⁻¹).

The structure of the time dependence data block is: [MAT, 1, 460/ZA, AWR, LO=1, 0, NG, 0] HEAD [MAT, 1, 460/0.0, 0.0, 1, 0, NR, NP/t_{int}/T₁(t)] TAB1 [MAT, 1, 460/0.0, 0.0, 2, 0, NR, NP/t_{int}/T₂(t)] TAB1 ... [MAT, 1, 460/0.0, 0.0, NG, 0, NR, NP/t_{int}/T_{NG}(t)] TAB1 [MAT, 1, 0/0.0, 0.0, 0, 0, 0, 0] SEND

"Complete," but huge datasets

Continuous Representation

$$s_{\gamma}(E, E_{\gamma}, t) = \sum_{i=1}^{NNF} y_i(E) f_i(E \leftarrow E_{\gamma}) \lambda_i \exp(-t\lambda_i).$$

Continuous Representation (LO=2)

The following quantities are defined:

- **NNF** The number of precursor families considered.
- λ_i Decay constant (sec⁻¹) for the ith precursor.

The structure of this data block is: [MAT, 1, 460/ ZA, AWR, LO=2, 0, 0, 0] HEAD [MAT, 1, 460/ 0.0, 0.0, 0, 0, 0, NN F, $0/\lambda_1$, λ_2 , ... λ_{NNF}] LIST [MAT, 1, 0/ 0.0, 0.0, 0, 0, 0, 0] SEND

Don't resolve individual γ 's, but format like delayed n data