

OVERVIEW OF THE U238 EVALUATION IN THE RESOLVED RESONANCE RANGE

H. DerrienA. CourcelleL. LealN. Larson

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Motivation for a new evaluation of U238 resonances

Nuclear Science and Technology Division

Evalution of U238 resonance parameters in ENDF\B-VI.8, JENDL3.3, JEFF3.0 by Moxon et al. In 1994 (0 -10 keV). Aim of the new evalution :

- Include transmission measurements from J. Harvey et al. (ORELA, 1988, 1 keV – several hundred keV) and capture from Macklin et al. (ORELA, 1988)
- . Extension of the resolved range 10 keV \Rightarrow 20 keV
- Investigate below 1 keV (thermal capture value, first large resonances, solid state effect...)
- Improve (if possible) prediction of keff for thermal integral benchmarks. More information : see WPEC/Subgroup-22 and ueval@nea.fr forum

Status of U238 evaluation work

Nuclear Science and Technology Division

- Preliminary evaluation ORNL2 (0-20 keV) released last year for testing purpose : ueval@nea.fr.
- Improved evaluation ORNL3 presented at the Santa-Fe Conference ND2004 :

Analysis of Macklin et al. Capture data (1988) Refined analysis of the range thermal - keV

 ORNL4 just completed and ready to be merged with LANL "high energy" evaluation and tested Refined analysis of the range 1 keV – 10 keV

Experimental database

Nuclear Science and Technology Division

Energy Range	Reference	Measurement Type	Sample Thickness (at/b)	Flight path Length (m)
0.0253 eV	Poenitz et al. [9] ANL 1981	Activation	ivation	
Thermal Range	Corvi et al. [10] GELINA 1997	Capture	1 sample 0.0010	8.7
> 5 eV	Defilippo et al. [11] ORELA 1980	fission		40.
6 eV - 38 eV	Meister et al. [7] GELINA 1997	Transmission	4 samples U and UO ₂	26.5
6 eV - 100 keV	de Saussure et al. [12] ORELA 1973	Capture	1 sample 0.0028	40.
0.5 eV - 4 keV	Olsen et al. [13] ORELA 1977	Transmission	7 samples 0.0002 to 0.175	42.
300 eV - 100 keV	Olsen et al. [14] ORELA 1979	Transmission	4 samples 0.0038 to 0.175	150.
250 eV - 130 keV	Maeklin et al. [4] ORELA 1988	Capture	2 samples 0.0031, 0.0124	150.
1 keV - 100 keV	Harvey et al. [3] ORELA 1988	Transmission	3 samples 0.0124 to 0.175	200.

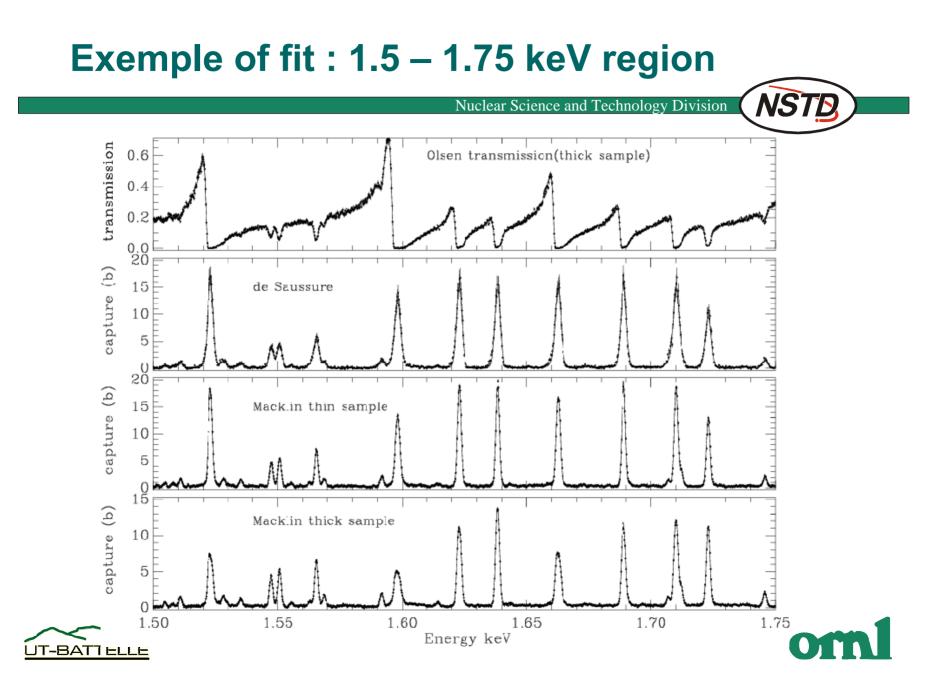
Analyzed for the first time

Nuclear Science and Technology Division

NSID

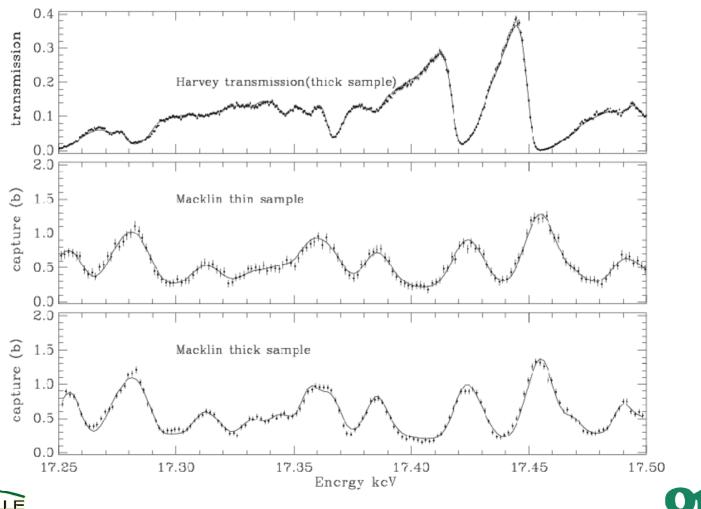
- SAMMY code, Reich Moore formalism
- Experimental parameters studied :
 - Norm, Background, Resolution, Cross Section Correction: Self-Shielding, Multiple Scattering, Doppler Broadening.
- Preliminary analysis for the determination of the best values for the experimental resolution function.
- Preliminary analysis for the determination of the External Resonance Parameters and of the Effective Scattering Radius R', (R' = 9.45 fm)
- In the energy range 0 eV to 20 keV:
 - 898 s-wave resonances D=22.3 eV
 - 849 p1/2 resonances D=23.6 eV
 - 1565 p3/2 resonances D=12.8 eV

3312 resonances

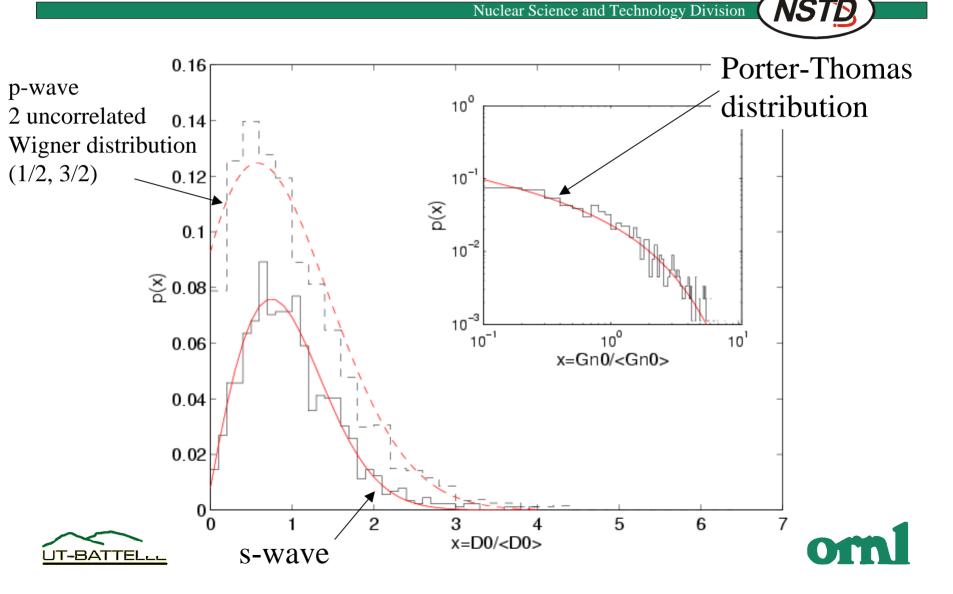

Resonance parameters below 103 eV NSTD Nuclear Science and Technology Division Γ_n meV Energy Γ_{γ} meV Γ_n meV Γ_{γ} meV $\Gamma_n \text{ meV}$ ENDF/B-VI ENDF/B-VI present work present work present work Γ_{γ} from ENDF/B-VI R' = 9.45 fmR' = 9.42 fmR' = 9.45 fm6.674 23.01 ± 0.02 1.475 ± 0.001 23.00 1.493 1.476 ± 0.001 10.07 ± 0.01 20.871 23.12 ± 0.03 10.26 10.04 ± 0.01 22.91 36.682 23.41 ± 0.04 33.43 ± 0.02 34.13 33.55 ± 0.02 22.89 66.031 23.64 ± 0.10 24.17 ± 0.04 23.36 24.60 24.23 ± 0.03 80.747 23.31 ± 0.41 1.877 ± 0.01 23.00 1.865 1.877 ± 0.01 71.03 ± 0.08 102.56 24.53 ± 0.14 70.62 ± 0.08 23.40 71.70

Adopted in the present ORNL evaluation

Because it gives better results on integral exp.



Exemple of fit : 17.25 keV – 17.50 keV


Nuclear Science and Technology Division

VS

Statistical properties of resonance parameters

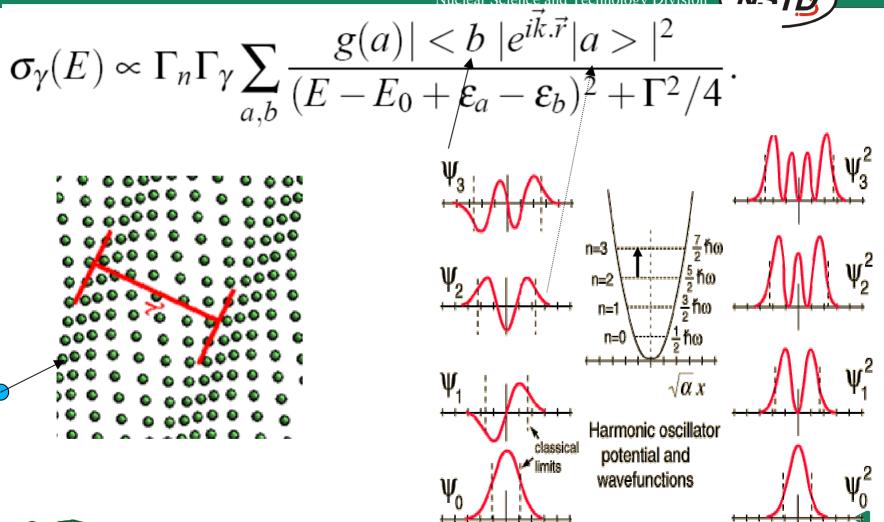
Choice of thermal cross-section

Nuclear Science and Technology Division

NSTD

- Thermal capture cross-section adjusted : $\sigma_0 = 2.683 \pm 0.012$ b following recent work of A. TrkoV
- Thermal scattering cross-section adjusted on bound coherent scattering length measurements :

			7
Meas.	Value of b	4*pi*a2	
	fm	b	
Atoji et al. (1961)	8.55 ± 0.06 fm	9.38	a : free coherent lengthb : bound coherent length, accurately
Roof et al. (1962)	8.4± 0.2 fm	9.06	measured by neutron interferometry
Willis et al. (1963)	8.5 ± 0.06 fm	9.27	a = f(b)
Koestler (1974)	8.63 ± 0.04 fm	9.56	
Mughabgahb	8.55 ± 0.04 fm	9.38 🔻	
Boeuf et al. (1982)	8.407 ± 0.007 fm	9.08	Discrepant values
UT-BATTELLE			om
			Not yet included in the evaluation


Solid state effect in Doppler broadening

- Resonance analysis usually based on Free Gas Model
- Effective temperature used to simulate solid state effects
 - Lamb's prescription (not valid for the first s-wave U238 resonances)
 - Temperature fitted
- More rigorous Crystal Lattice Model implemented in SAMMY recently by N. Larson (based on the DOPUSH code, D. Naberejnev et al.)

CLM theory (Lamb 1937)

Nuclear Science and

The Crystal Lattice Model

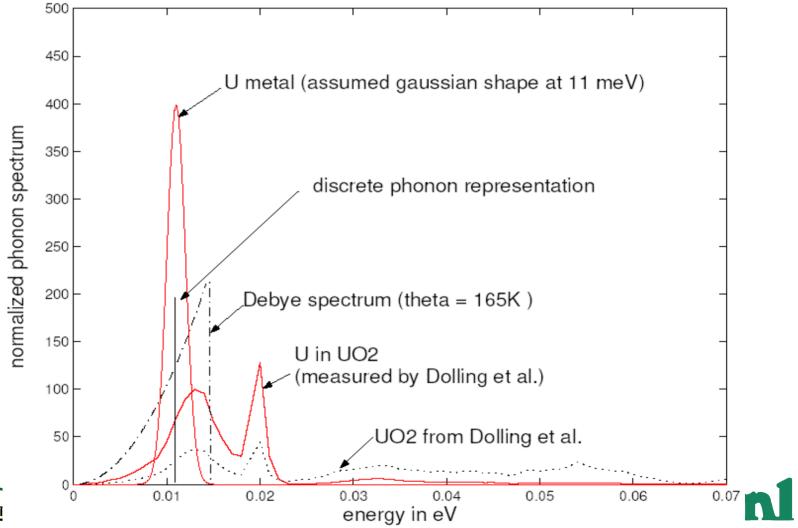
Nuclear Science and Technology Division

$$\sigma_{\gamma}(E) = \int_{-\infty}^{\infty} S(\vec{k}, E') \sigma_{\gamma}^{T=0} (E - E') dE'$$

With
$$S(E, E') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iE't} e^{\frac{mE}{M+m} [\gamma(t) - \gamma(0)]} dt \qquad (5)$$

and

$$\gamma(t) = \int_0^{+\infty} \frac{\rho(\hbar\omega)}{\hbar\omega} [\coth(\frac{\hbar\omega}{2kT})\cos(\omega t) + i\sin(\omega t)]d\hbar\omega.$$

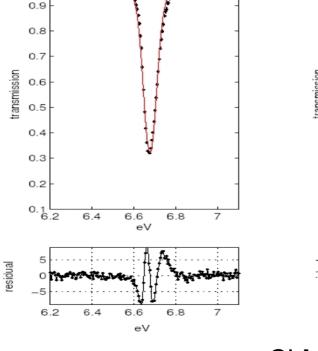


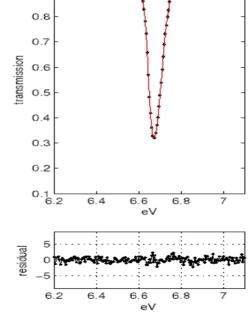
NSTD

Uranium metal and oxide phonon spectrum

Nuclear Science and Technology Division

NSTD


U238 fit with the Free Gas Model (FGM) and Crystal Lattice Model (CLM) of SAMMY


Nuclear Science and Technology Division

0.9

→ test of SAMMY-CLM on U238 transmission (GEEL) at low and room temperature (Meister 1997)

Ex : UO2 thick sample 23.7K

FGM + adjT

CLM with Dolling et al. Phonon spectrum

Olsen et al. Measurements (1977) 6.67 eV resonance (u-metal 300K) NSID Nuclear Science and Technology Division 0.9 0.8 0.7 0.6transmission 0.5 0.4 0.3 0.2 0.1 0 5.5 6 6.5 7 7.5 8 eV

TABLE 3. Comparison of FGM versus CLM resonance parameters of the 6.7 eV resonance from sequential fits of Olsen et al. [12] transmission data. Uncertainty values take into account only statistical errors and are strongly underestimated.

Method	E_r eV	Γ_{γ} meV	Γ_n meV			
R' = 9.45 fm						
FGM $T = 300$ K	6.6742	23.09	1.471			
FGM $T_{fit} = 296.8 \text{ K}$	6.6741	23.08	1.473			
CLM T = 293 K	6.6734	23.02	1.476			
Statistical uncertainty	0.0001	0.02	0.001			

D

Conclusion on solid state effect

Nuclear Science and Technology Division

- CLM of SAMMY improves fits on U238 low temperature measurements
- Small impact on U238 extracted resonance parameters for roomtemperature, u-metal measurements

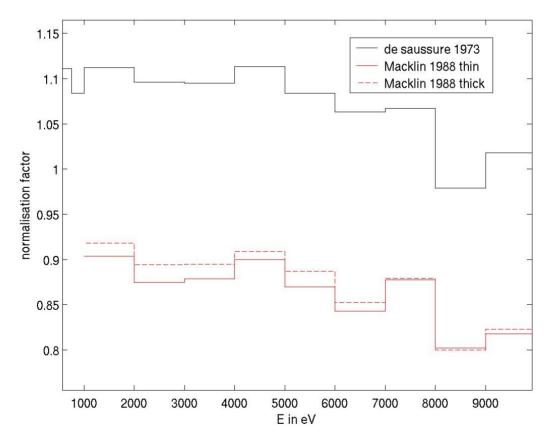
Advantage

Drawback

Choice of temperature

Computation time

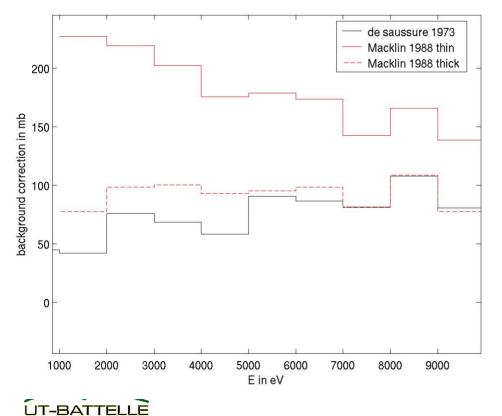
Phonon spectrum needs to be known



Accuracy of U238 capture cross-section measurements

Nuclear Science and Technology Division

Normalization factor obtained from the SAMMY fit



VS

Direct capture at thermal and low energy for U238 ?

Nuclear Science and Technology Division

Background values obtained from the Sammy fits of Capture measurements

Mughbghab estimates 80 mb at thermal energy (Lane-Lynn formalism)
uncertainties on spectroscopic factors measured by (d,p) reaction

NST

Direct capture at thermal and low energy for U238 ?

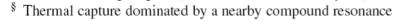
Nuclear Science and Technology Division

Theoretical estimate (see ND2004 paper by Arbanas et al.)

Direct-Semidirect Neutron Capture Calculations Applied to R-Matrix Data Evaluations in the Resolved Resonance Region

G. Arbanas*, F. S. Dietrich[†] and A. K. Kerman**

TABLE 1. Summary of thermal capture results and comparison with prior works; all cross sections listed in mb; a systematic error of $\pm 20\%$ comes mostly from the uncertainty in the measurements of the spectroscopic factors

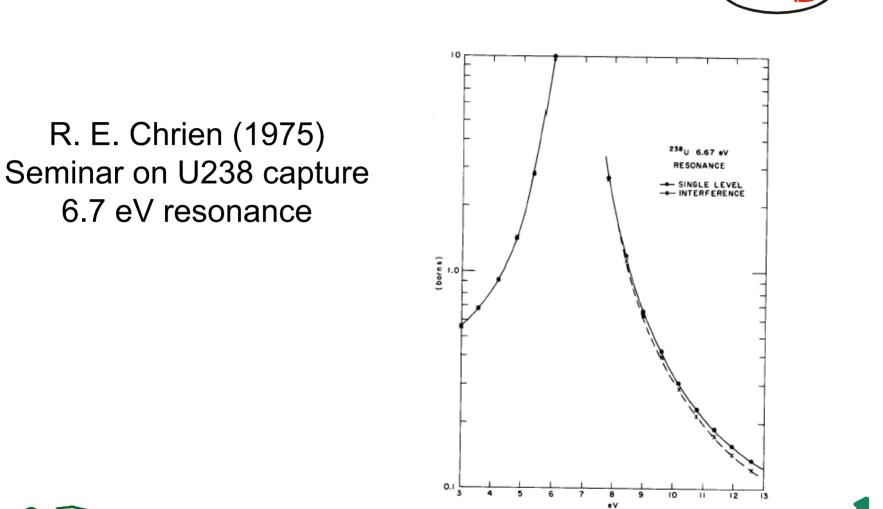

Author	$^{19}\mathbf{F}$	²⁷ Al	28 Si	²⁹ Si	³⁰ Si	³⁵ Cl	³⁷ Cl	³⁹ K	$^{41}\mathbf{K}$
This work *	6.5	60	133	111	98	430	418	799	544
Rauscher [†]	_		65	58	67	160	310		
Raman-Lynn**			134	116	100	—			
Lane-Lynn [‡]	4.7	108	107	70	64		400	753	1,320
Exp.	9.5	231	169	119	107	43,600 [§]	433	2,100	1,460

* A real part of the Koning-Delaroche OMP [11] was used for DSD.

[†] Performed with TEDCA program; direct capture only.

** based on R-matrix theory with complex OMP and valence capture

[‡] Taken from Mughabghab [12], based on Lane and Lynn [2].


Interference in the capture channels ?

- NSTE
- Evaluation based on Reich-Moore Formalism
 - Large number of exit channel in capture
 - off-diagonal radiation widths average to zero (radiative widths amplitude have randoms signs)
- But in U239, one transition (4059 keV to $\frac{1}{2}$ state) has a higher probability (~10% of the total capture)
- Might cause asymmetry in the capture resonance shape (interference effect)

Interference in the capture channels ?

Integral testing

- ORNL2 + LANL high energy extensively tested
 Good results on thermal benchmarks (LCT)
- ORNL4 + new-LANL just started (Bob Mc Farlane, MCNP)
 - Still good results on thermal benchmarks

Work in progress

- Thermal scattering cross-section value
- Class-II resonances
- No impact on integral results
- U238 unresolved range (20 keV 150 or 300 keV), new features :
 - Analysis of Macklin capture data (1988 ORELA) and Harvey transmission data (1988 – ORELA) in the range 20 – 100 keV

- Evaluation of U238 resonance parameter "ORNL4" completed
- The new file is being merged with the LANL new "high energy" evaluation of Young et al.
- Should be available for integral testing soon.

