Capture cross sections with DANCE for s-process

T. Kawano

- Theories for capture of nucleon γ -ray emission, Level density, DSD capture
- Applications to nucleosynthesis Neutron capture cross sections for Zrisotopes
- Concluding Remarks

LANSCE Lujan Center

DANCE

- DANCE is a 4π detector array that consists of up to 160 elements of BaF₂ crystals.
- It is designed to study capture reactions on small quantities of radioactive isotopes (down to 1 mg or up to 1 Ci)

Capture Measurements at DANCE

- ⁹⁵Zr capture cross section is needed for astrophysics.
- Measurements for ⁹³Zr capture can be done with the DANCE detector.
- We estimate the 95 Zr (n, γ) cross section, taking advantage of our nuclear modelling capability and LANSCE/DANCE experiments.

Half of DANCE array with ⁶LiH ball

J.L. Ullmann, DANCE workshop, Feb. 2004

Neutron Capture Process

Neutron Energy [MeV]

Washing-out of Shell Effects

The level density is given by

$$\rho(U + \Delta) \propto \exp\left\{\sqrt{2a(U + \Delta)}\right\},$$

where *a* is the level density parameter.
Shell correction (δW) and pairing energies (Δ) are needed to wash-out the shell effects.

$$a = a^* \left\{ 1 + \frac{\delta W}{U} \left(1 - e^{-\gamma U} \right) \right\}$$

We still see the shell effects (green dots), when δW and Δ are taken from KTUY(04) mass formula.

 $a^* \simeq 0.138A + 5.34 \times 10^{-5}A^2$

Level Density Parameter, cont'd

The microscopic / macroscopic approach for δW and Δ of P.Möller

 $a^* \simeq 0.132A + 1.29 \times 10^{-3}A^2$

DSD Contribution to MACS

Cross Section

$$\sigma(l_1 j_1; l_0 j_0) = \frac{8\pi\mu}{9k\hbar^2} \left(\frac{E_{\gamma}}{\hbar c}\right)^3 |T_d + T_{sd}|^2$$

Calculated Zr-90 Capture

Zr-90 Neutron Capture Cross Section

Zr-93 Neutron Capture Cross Section

MACS Mass Dependence

Los Alamos

Theories Included

- Hauser-Feshbach statistical model with width fluctuation correction
- Direct-Semidirect capture process Systematics for the strength

Neutron Reaction (Capture) Data for Astrophysics

- Development of an automated cross section calculation system
 - Optical Model and Hauser-Feshbach-Moldauer Theory
 - linked to nuclear structure information
 - KTUY04 mass formula or P.Möller's shell/pairing energies
 - Level densities are also linked to the mass formulae
 - systemtatics/phenomenology new parametrization
- Capture cross sections for Zr isotopes.
- Contribution of DSD process to the Maxwellean averaged capture cross section is very small.

