UCRL-PRES-207480

Neutron capture spectra and other nuclear data plans

Dennis McNabb Rick Firestone Brad Sleaford

*This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

- Applications sometimes require accurate simulations of data
 - Backgrounds
 - Energy conservation
 - Energy and multiplicity distributions per event
- Very few experiments directly measure QC spectrum
 - A lot of work to unfold detector response
 - Typically requires isotopically-enriched targets to interpret data
 - I'm still looking for good examples in the literature

Solution: Model QC spectra

Problem: How do we validate calculations without direct experimental evidence?

- Develop the γ-ray decay model
 - γ -ray cascade algorithm from F. Becvar (NIM A417, 434 (1998))
 - Physics input from a variety of sources
- Validate model against thermal neutron capture gamma-ray data
 - Gamma-ray lines and relative intensities
 - » Institute of Isotope and Surface Chemistry, Budapest
 - » EGAF: Extensive re-evaluation of all the literature
 - Total partial widths: Γ_{γ}
- Demonstrate that new model is predictive
 - Nuclear spectroscopy: J^π assignments
 - Neutron capture cross sections from γ -ray cross sections
- Crank out new evaluations for ENDF
 - Database feeds transport codes such as MCNP

More data may be needed to zero in on QC spectrum

- Converting EGAF into ENDF for Z ≈< 20
- Using current ENDF capture cross sections
 - Recent data suggests changes for some isotopes
 - Multiplicity per cascade defined as

$$m_i = \frac{\sigma_i^{EGAF}}{\sigma_{(n,\gamma)}^{ENDF}}$$

- One overall scale factor used to conserve energy
 - Worst case so far is an \approx 15% correction

$$Q = A \sum_{i} m_{i} E_{\gamma_{i}}$$

Work by Brad Sleaford

Tgt ZA NK,# linN.A.(MugS(eV*Yield) (Q-S(eV*Yield))Comments/Status

1001	1	99.98%	2.2263E+06	-0.06%	Ace, Gendf Libraries complete
1002	1	100.00%	6.2502E+06	0.11%	Ace, Gendf Libraries complete
2003	1	0.00%	6.2502E+06	0.11%	
3006	3	0.07589	1.47E+07	-1.030000E-02	Ace, Gendf Libraries complete
3007	3	92.41%	2.0464E+06	-0.66%	Ace, Gendf Libraries complete
4009	12	1	7.02E+06	-3.001541E-02	Ace, Gendf Libraries complete
5010	10	19.82%	6.9402E+06		TBD
5011	9	0.8018	7.20E+06		TBD
6013	13		5.786693E+06	-0.169738	Natural
6012	б	98.89%	5.3922E+06	-9.01%	Ace, Gendf Libraries complete
6013	7	1.11%	6.9920E+06	14.49%	Ace, Gendf Libraries complete
7014	60	99.63%	1.0794E+07	0.34%	Ace, Gendf Libraries complete
8016	4	99.76%	4.2191E+06	-1.84%	Ace, Gendf Libraries complete
8017	20	0.03%	9.0172E+06	-12.06%	Natural
9019	165	100.00%	6.6043E+06	-0.05%	OK
10020	27	90.48%	6.7118E+06	0.73%	TBD
10021	11	0.27%	1.1456E+07	-10.54%	TBD
10022	10	9.25%	5.0577E+06	2.75%	TBD
11023	233	100.00%	6.5101E+06	6.46%	Libraries complete (natural)
12024	35	78.99%	7.3899E+06	-0.81%	In Process
12025	206	10.00%	1.0927E+07	1.49%	In Process
12026	41	11.01%	6.5472E+06	-1.61%	In Process
13027	230		7.55E+06	2.25%	Ace Gendf Libraries complete
14028	46	92.23%	1.7363E+07	-8.98%	Ace, Gendf Libraries complete
14029	98	4.68%	1.1288E+08		TBD
14030	38	3.09%	7.4716E+06		TBD
15031	158	100.00%	7.3497E+06		TBD
16032	101	95.02%	8.4862E+06		TBD
16033	249	0.75%	1.0342E+07		TBD

ENDF/B- VI Ev	a luat	i on, 🛛	Augus	t 2004	, R.	F. Fi re	esto	ne (L BNL)		12 00 14	51 1	3
	D. Men	abb, l	B. W .	Sl eafo	rd (LL NL)				120 0 14	51 14	4
										12 00 14	51 1.	5
The p r omp	t gamm	a-ray	spec	t rum f	or th	ermal r	a di	ati ve ca pt	ure 1	200 14	51 10	6
(MF 12, MT	102) h	as be	en up	dated	with	new e xp	oeri	menta l dat	a.[Fi]	12 00 14	51 1	7
										12 00 14	51 1	8
REFERENCE										12 00 14	51 2	1
										12 00 14	51 2	2
[Fi] D at	a deriv	v ed fr	om	th e Eva	al uate	ed Gam	na -ra	ay Acti vat	io n Fil	l e1200 14	51 2.	3
(EGAF) as	desc	r ibed	in "	Databa	s e of	Prom pt	Ga	mma R a ys f	r om S 1	ow12 00 14	51 2-	4
Neut r on C	a ptur	e for	Elem	e ntal	Analy	s is", I	R.B.	Fire s tone	,	1200 145	1 2:	5
H.D. Cho	i, R. M.	1. L i nc	lst ro	om, G.L.	Mol	nar , S.	F.	Mughabg hab),	1200 145	1 20	6
R. Pa viott	i -Cor	c uera	, Zs	s. Revay	y, V.	Zerkin,	8	und C.M. Zł	nou,	12001 4	51 2	7
IAEA TEC	DOC, i	n pre s	s s.							12 00 14	51 2	8
										12 00 14	51 2	9
1 . 3027 00+4	2.674	975+1		1		0		291		013 25121	02275 1	9
0.000000+0	0. 0000	$0+0 \ 00$		0		0		1		171325 121	022 7520	0
17		2								13 25121	02275 2	1
1.0000.00-5	2.230	130+0	1.00	0000+4	2.23	0130+ 0	1.0	00000 +5 2.	23000 0	0+013 25121	02275 2	2
5.0000.00+5	2.450	000+0	1.00	0000+6	2.45	0000+0	2.0	00000 +6 2.	47000 0	0+013 25121	02275 2	3
3.0000.00+6	2.500	000+0	4.00	0000+6	2.55	0000+0	6.0	00000 +6 2.	61000 0	0+013 25121	02275 2	4
8.0000.00+6	2.840	000+0	1.00	0000+7	2.95	0000+0	1.2	00000 +7 2.	98000 0	0+013 25121	02275 2	5
1 . 4000 00+7	3.050	000+0	1.70	0000+7	3.36	0000+0	2.0	00000 +7 3.	91000 0	0+013 25121	02275 2	6
2.000001+7	0.000	0+000	1.50	0000+8	0.00	0000+0				13 25121	02275 2	7
7 . 7240 26+6	0.000	000+0		0		2		1		613 25121	02275 2	8
6		2								13 25121	02275 2	9
1.0000.00-5	2.874	819-1	1.00	0000+4	2.87	4819-1	1.0	00000 + 50.	00000 0	0+013 25121	02275 3	0
2.000000+7	0.000	0+000	2.00	0001 + 7	0.00	0000+0	1.5	00000 + 80.	00000 0	0+013 25121	02275 3	1

- Validating our model against data
 - Experimental QC spectra would be useful
 - $-\Gamma_{\gamma}$ widths may be enough to select "best" model
- Model is predictive
- Systematic uncertainties in the computed QC spectrum due to
 - Level density
 - Strength functions
- Need to add more test cases before confident in prescription

Future plans for improving photon production

- Non-thermal neutron capture spectra
- Inelastic scattering photon production
- Decay spectra
- Joint LBNL/LLNL website targeted to homeland security personnel interested in these issues

Goal: Improve transport simulation capability for new radiochemical diagnostics (actinides)

- Add physics of low-energy neutron scattering to nuclear data code libraries to improve fidelity of (n,γ) simulations
 - MCAPM
 - NDF
- Collaborate with LANL on best estimates of actinide production/depletion cross sections <u>with uncertainties</u>
 - Good fission cross sections are key for fast neutrons
 - Good capture cross sections are key for slow neutrons

We bring an experimental focus to this collaboration

Fission and capture cross sections are hard to predict theoretically

$$\sigma_r = \sigma_{(n,f)} + \sigma_{(n,n')} + \sigma_{(n,2n)}(+\sigma_{(n,\gamma)})$$
$$= \pi (R + D)^2 (1 - e^{-\alpha})$$

- 6-parameter fit with dependence on E_n, N, Z good to ≈1%
 - 2 parameters for R
 - 4 parameters for $\boldsymbol{\alpha}$
- σ_r for nuclei with no data to 3-4% for fast neutrons
 - McNabb et al., submitted to NSE & ND conference
 - Follow up work in progress

Fission cross sections are the missing link Need good model of functional shapes of (n,n') and (n,2n)

- Analyze old transfer data for E < 2.2 MeV
 - Extend to 14 MeV w/ theory
- Obtain new data with improved technology
 - Extend experiments to higher energies
 - Improve understanding of errors

Both efforts use data from "surrogate" reactions

Preliminary extension of (n,f) to E_n = 20 MeV

Surrogate-data estimate of ^{235,237}U(n,f) currently limited to E_n < 2.2 MeV

- use linear extrapolation for 1st-chance fission
- use measured A-1U(n,f) for 2nd+3rd-chance fission

· W. Younes et al., UCRL-ID-154194 (2003)

Looks promising, but need improved fission model ⇒ predictions up to 20 MeV entirely from surrogate data

Validation of the surrogate technique for Actinides: ^{236,238}U(d,d') with STARS - May 2004

Work by L. Bernstein, J. Church, L. Ahle, J. Punyon

PRELIMINARY ratios in agreement with W. Younes et. al. ²³⁸U analysis (non-ratio) still in progress

11/18/2004-14

sics & Advanced Technologies

Work by David Brown, UCRL-TR-202393 Generating the starting point for a global fit

First-pass results for ²³²⁻²⁴¹U cross sections delivered:

- Adopted model calculations from Japan, Europe, US
- Modified results in key areas based on data, sum rules
- Estimated model uncertainties in a crude fashion

"I'm pleased to see that uncertainties are being added to the data." -- C. McMillan. B-Div Leader

Physics & Advanced Physics & Advanced Physics

- Production and depletion of actinide isotopes
 - Forensic signatures
 - Uncertainties required
- Simultaneous fit to actinide cross section data
 - Data-driven
 - » Covariances included
 - Theoretical assumptions
 - » Explicit constraints
 - Uncertainties intrinsic

Automating as much as we can to generate first-pass estimate for all nuclei

- x4i to parse exp. data
- fete to parse ENDF/B data -prelim. ENDF/B-6, JEFF3.0, JENDL3.3
- Constrained, generalized least-square spline fitter

sics & Advanced **Technologies**

- We're close to having a first-pass cross section set – Now our goal is to "do it right" (global fit)
- We are excited about surrogate fission effort – Will require a sustained multi-year effort
- Working toward more involved in DANCE (n,γ) measurements

• Rewrote 2-D plotting

- Publication quality graphics
- More control over look and feel (similar to xmgrace)
- Faster plotting with large data sets
- Plots uncertainties
- Preferences can be saved
- Added EXFOR cross section data
- Improved computational features
 - Merge EXFOR data sets
 - Save/load computation sessions
 - Commands history
 - Some 2-D data (vector) math added
- New table features
 - Tab-delimited text file may be read in
 - Tables can be edited and saved or replotted
- Modified server start-up procedure
 - Starts up in 30 seconds, loads data into memory as requested
 - Will help us deal with lost port problem / crashes

