Astrophysics Task Force

Michael Smith ORNL Physics Division

Numerous USNDP institutions are pursuing projects needed to improve studies in nuclear astrophysics

These activities often involve a focus on both nuclear reactions and nuclear structure

Recent Activities in

Compilations & Evaluations

BNL, LANL, McMaster,

ORNL, TUNL

Development of Evaluation, Processing, & Dissemination

Tools

Nuclear Theory

LANL

ORNL

Compilations & Evaluations

BNL

- Compiled all available data for α-induced reactions on ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, ³⁶Ar, ⁴⁰Ca [VNIIEF collaboration, ND2004 poster]
- Collaborated with VNIIEF on use of Empire code

LANL

• R-matrix calculations of light mass nuclei important in stellar explosions (e.g., ¹⁸Ne) and other astrophysics scenarios

McMaster

Focus on reactions involving **radioactive nuclei** important for **stellar explosions** - coupled to ISAC measurements

Reaction evaluations in progress: 21 Na(p, γ) 22 Mg, 18 Ne(α ,p) 21 Na, & 25 Al(p, γ) 26 Si

All evaluations incorporating the very latest experimental results

Results will be disseminated through **nucastrodata.org** & NNDC

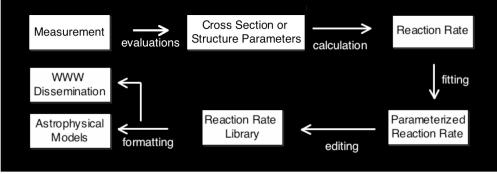
Compilations & Evaluations

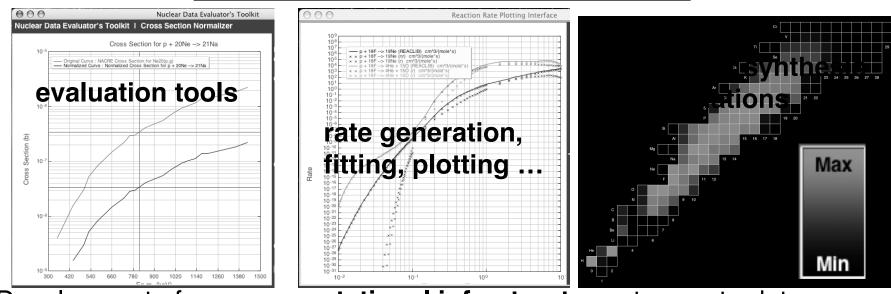
ORNL

Focus on reactions involving **radioactive nuclei** important for **stellar explosions** - coupled to HRIBF measurements

Reaction evaluations in progress: ${}^{18}F(p,\gamma){}^{19}Ne, {}^{18}F(p,\alpha){}^{15}O, {}^{30}P(p,\gamma){}^{31}S, {}^{33}Cl(p,\gamma){}^{34}Ar, {}^{17}O(p,\gamma){}^{18}F, {}^{17}O(p,\alpha){}^{14}N$

All evaluations incorporating the very latest experimental results


Results will be disseminated through nucastrodata.org & NNDC


TUNL

Completion of A = 8 - 10 evaluation, important in **early universe element synthesis**, for **solar thermonuclear fusion reactions**, & some **explosive astrophysical events**

Development of Evaluation, Processing, & Dissemination Tools

ORNL

Development of **new computational infrastructure** at nucastrodata.org to speed incorporation of nuclear evaluations into astro models

Development of **Monte Carlo element synthesis techniques** to quantitatively determine influence of nuclear reaction rate uncertainties (from data evaluations) on astro predictions [with ANL]

P. Moller

Nuclear Theory LANL

Calculate **decay rates & log(ft) values** for beta decay from parent nuclei states to all different states in daughter nuclei

Include contribution of decay of excited states in parent nuclei to account for high-temperature astrophysical processes (supernovae...) Folded-Yukawa potential

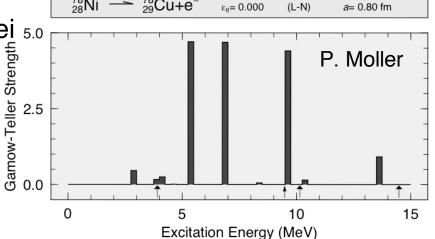
Datasets generated for thousands of nuclei 5.0

Calculations of capture cross sections on unstable nuclei at low energies

Hauser-Feshbach model with width fluctuation correction

PAIRING MODEL: LIPKIN-NOGAMI SINGLE-PARICLE MODEL: FOLDED-YUKAWA

BETA-STRENGTH (1/MEV)


2.75 - 3.00	0.4607051E+00	
3.50 - 3.75	0.8800582E-03	
3.75 - 4.00	0.1655856E+00	
4.00 - 4.25	0.2507653E+00	
4.50 - 4.75	0.1250124E-01	
5.25 - 5.50	0.4706103E+01	
5.50 - 5.75	0.9565681E-03	
6.75 - 7.00	0.4688719E+01	
8.25 - 8.50	0.5553497E-01	
9.50 - 9.75	0.4404953E+01	
10.25 - 10.50	0.1502496E+00	
13.50 - 13.75	0.9146936E+00	
T-1/2 (SECS) =	0.371386E+00 EQBET =	9.4830 MeV
•		

Ener Beta Strength IP IN SIG OMP OMN DV Int. (%) log(ft)

 ϵ_2 = 0.000 Δ_n =0.64 MeV λ_n =32.96 MeV

 ϵ_4 = 0.000 Δ_p =1.08 MeV λ_p =29.95 MeV

2.76 0.1151763E+00 16 20 1 1/2- 1/2- 2 40.4129 4.5547 3.95 0.4139639E-01 14 19 1 1/2- 1/2- 2 5.9869

 $P_n = 59.55 \%$ $T_{1/2}=371.39 \text{ (ms)}$

-- 78/20+e⁻

Important for s-process element synthesis in red giant stars

Summary

- Progress in understanding many astrophysical phenomena requires improved nuclear data
- Interesting, Important Astrophysics Projects involving
 - Structure & Reaction work
 - Compilations, Evaluations, Disseminations, Tool development, Theory
 - Multiple laboratories ANL, BNL, LANL, McMaster, ORNL, & TUNL
- New computational infrastructure at nucastrodata.org now online to pull this information into astro models