LLNL's GND nuclear data structure and processing

16 Nov. 2011

Bret Beck and Caleb Mattoon

Lawrence Livermore National Laboratory

LLNL-PRES-513408

Outline

- GND, new nuclear data structure development
 - Motivation
 - Design status
 - Infrastructure
 - General
 - Processing

Collaborators

Caleb Mattoon, Nidhi Patel, Neil Summers and Gerry Hedstrom LLNL

Dave Brown BNL

Motivation for new nuclear data format

- Three flavors of nuclear data
 - Experimental (e.g., ExFor)
 - Evaluated (e.g, ENDF and ENDL (LLNL))
 - Processed
 - Deterministic (e.g., ndf (LLNL) and NDI (LANL))
 - Monte Carlo (e.g., mcf (LLNL) and ACE (MCPN/LANL))

The GND structure is designed to include evaluated and process data.

LLNL legacy formats overview

	Started	Format	Form
Evaluated	1960	FORTRAN Card based	Pointwise
Processed Deterministic	~ 1970	Cray? binary	Pointwise
Processed Monte Carlo	~ 1970	Cray? binary then PDB - LLNL developed	Pointwise

- LLNL legacy formats
 - Limit types of data that can be stored
 - All pointwise, no ENDF function equivalent types
 - Bloat data (ENDL), example on next slide
 - Slow to access for large files (PDB), example on next slide

LLNL is divorced from others

- ENDF was started ~1964, ~4 years after ENDL
 - LLNL has been detached from other since
- From Endf To Endl (FETE) code developed in the last 10 years
 - Some ENDF data bloats in ENDL format Example:

ENDF (Kalbach/Mann) 740kB GND/XML 560kB ENDL 20 MB

- Bloated data not always bloated enough
- PDB limitations:
 - A merge of two large pdb files took 1400 minutes

Up shot, LLNL needs new evaluated, deterministic and Monte Carlo nuclear data formats.

GND structure

- One goal, structure represent physics
 - Per reaction data
 - Cross section
 - Per product data
 - Multiplicity
 - Distribution data
 - Energy and momentum deposition data
- Defining a structure (GND) and not a format GND/XML, GND/HDF5, GND/?
- ~3 to 4 FTE years of development to date (design, development, translation, infrastructure, processing and C accessing)
- Supports ENDL and ENDF data types

From 3 to 1 (kind of)

- Initially, evaluated, deterministic and Monte Carlo formats differed
- Realized that most of the structure is the same only the end data are different (called forms)
 - Reaction
 - cross section
 - outputChannel
 - product1
 - product2
 - For example: cross section forms can be:
 - resonance parameters for evaluated
 - pointwise for Monte Carlo
 - grouped for deterministic

FUDGE: Infrastructure for GND

- FUDGE (For Updating Data and Generating ENDL)
 - Read, modify, plot, process and write
 - Top level written in python
 - C, C++, FORTRAN wrappers when speed is an issue
 - Converter for
 - ENDL to GND, ENDF to GND, GND to ENDF
 - Can convert all of ENDF/B-VII.1/neutron
 - Except ~6 bad evaluations
 - Can convert most of Photon and charge particle evaluations
 - GND/XML to GND/HDF5 converter
 - FUDGE is available to all
 - We have released two beta versions
 - Releasing 1.0 (see Me, Caleb Mattoon or Dave Brown)

FUDGE/GND is Object Oriented

- Methods to
 - Read/write GND
 - Plot data: many data classes will have a plot method
 - Math operations on data
 - Processing data
 - Checking data
 - etc.

FUDGE processing infrastructure

- Processing converts evaluated data into derived data or data useful for transport codes
- Derived data: calculated from existing data
 - Examples, energy and momentum deposition data
 - Energy deposition data

$$\langle E'(E) \rangle = \int d\mu \int dE' E' f(E \mid \mu, E')$$

- Good for checking product spectral data, $f(E \mid \mu, E')$, via energy balance
- Transport data processing
 - Heating cross section
 - Grouping data
 - Transfer matrices for deterministic transport

Status of processing

- Energy and momentum deposition: Done by end of Nov.
- Heating cross section: Done
- Grouping data: Done
- Transfer matrices for deterministic transport
 - Routines written C++: Done
 - Need to interface python to C++ routines:
 - 50% Done
 - Complete by beginning of 2012
 - Elastic upscatter model
 - Includes thermal motion of target.
 - Estimate completion April 2012.

C accessing routines for transport codes

- Developing access library called GIDI
 - General Interaction Data Interface

Conclusion

- We have developed a new modern nuclear data structure called GND
- We have written a lot of infrastructure for GND
- We will share what we have done with other
- We want for cooperate with others to make GND and the infrastructure better
- We would like feedback

For information on how to get GND/Infrastructure please see me, Caleb Mattoon or Dave Brown