

1

TUNL Program on PREEQUILIBRIUM PHENOMENOLOGY

Constance Kalbach Walker

PROGRAM (Model Development)

Exciton preequilibrium model

- Studied with the code PRECO
- Additional models for reactions with complex particles
- Current version PRECO-2006 (Released Spring 2007)

EFFECT OF FUNDING CUT

- Reduced level of effort
- More time on reviewing activities

- Delayed release of PRECO-2006
- Slowed model development work
- Facilitated 9 days in W. Africa translating at a rural medical clinic

WORK ON PRECO-2006

 Option for printing production cross sections (total or preeq.)

Sample input/output files

 Cleaned up code Remove dead coding Update comments Test for non-standard coding Test for array boundary errors

Tested at ORNL – RSICC Different compilers and platforms

PROJECTILE BREAKUP

- Extend preliminary deuteron breakup model to He-3 and α-particles
- Absorbed fragment to initiate exciton model calculation in PRECO
- Work focusing first on centroid energies and peak widths

BREAKUP — Important Issues

Mechanism

One fragment absorbed or not? Multiple breakup modes for ³He and α ³He: pd and ppn α: dd, tp, hn, and dpn and ppnn

"Background" subtraction (normal preequilibrium cross section)

Angular distributions

Limited & varied angular range in data Must be studied before $\sigma_{BU}(E_{inc})$

BREAKUP

Deuteron Peak Energies

Tentative results (several schemes work)

BREAKUP

³He Peak Energies

Tentative results (several schemes work)

$$E_{0} = (A_{b}/3) (E_{inc}-2C) + C$$

$$C = 1.44 Z_{A} / D_{eff}$$

$$D_{eff} = \{1.2 + 5[1+exp(E_{inc}/30)]^{-1}\} A_{A}^{1/3}+1.2$$
8

BREAKUP

α-particle Peak Energies

Tentative results (several schemes work)

BREAKUP

Distance of closest approach

Heavy targets ($Z \approx 80$)

$$R_{eff} = 1.5 A^{1/3}$$

$$R_{eff} = 1.5(1 - E^{1/2}/14) A^{1/3}$$

$$R_{eff} = \{1.2 + 5[1 + \exp(E/30)]^{-1}\} A^{1/3} fm$$
10

Deuteron Peak Widths Tentative

BREAKUP

(d,p) systematics

BREAKUP

α-particle Peak Widths

POSSIBLE FUTURE WORK

Complete description of projectile breakup

- Include projectile breakup in PRECO
 Absorbed fragment initiates exciton model calculation
- Benchmark models / code for (N,N) rxns at E_{inc} = 90 to 200 MeV