OVERVIEW OF PRECISION INTERNAL CONVERSIO MEASUREMENTS AS TESTS OF INTERNAL CONVERSION THEORY

N. NICA TEXAS A&M UNIVERSITY

<u>ICC's</u>:

- Essential role in analysis of nuclear decay schemes, crucial in precision applications
- 1974RA14: HS theoretical ICC's systematically 2-3% larger than 19 experimental E3 and M4 measured ICC's
- 2002RA45: Survey of theoretical calculations and experimental ICC's:
 - <u>Theory</u>: detailed comparison of RHFS (HS, RFAP, BT) and RDF (BTNTR, RNIT1, RNIT2) calculations
 - Exchange interaction
 - The exact RDF better than the approximation of free electron gas used by RHF

Hole treatment

- No hole:
 - Bound and continuum states SCF of neutral atom
- Hole-SCF:
 - **o Bound state SCF of neutral atom;**
 - Continuum state SCF of ion + hole (full relaxation of ion orbitals)
- Hole-FO:
 - **o Bound state SCF of neutral atom;**
 - Continuum state ion field constructed from bound wave functions of neutral atom
 - (insufficient time for relaxation of ion orbitals)
- Finite size of nucleus
 - SC model (BT, BTNTR, RNIT1,2) better than NP (HS, RFAP)

• Experiment:

- Selected & evaluated 100 measured ICC's
- E2, M3, E3, M4, E5
- 0.5%-6% precision
- very few <1% precision</p>
- 2002RA45 conclusions, Δ(exp:theory)%
 - RHFS calculations: ~ -3% higher than measured ICC's
 - **RDF** calculations:

• No hole (BTNTR): +0.19(26)% BEST! • Hole-SCF (RNIT1): -0.94(24)% ○ Hole-FO (RNIT2): -1.18(24)%

PHYSICAL ARGUMENT!

K-shell filling time vs. time to leave atom $\sim 10^{-15} - 10^{-17} s \gg \sim 10^{-18} s$

• Recommended measuring $\alpha_{\rm K}$ of 80.2-keV, M4 transition in ¹⁹³Ir^m for which hole - no hole calculations are 11% apart

TEXAS A&M PROGRAM TO MEASURE ICC's

• Continues 2002RA45 by:

 a_K measurements of ≤ 1% precision
 in a number of cases relevant for theory vs. experiment comparison,
 especially for establishing if the physical argument for hole calculations is valid

• METHOD

$$\alpha_{K}\omega_{K} = \frac{N_{K}}{N_{\gamma}} \cdot \frac{\varepsilon_{\gamma}}{\varepsilon_{K}}$$

 $\circ N_K$, N_γ measured from only one K-shell converted transition

 $\circ \omega_K$ from 1999SCZX, or measured

 $\circ \varepsilon$ at 151 mm for ORTEC γ -X 280-cm³ coaxial HPGe:

- 0.2%, 50-1400 keV (2002HA61, 2003HE28)
- 0.4%, 1.4-3.5 MeV (2004HE34)
- Not know precisely for 10-50 keV (some K x-rays)

DETECTOR EFFICIENCY 50 keV < E_{γ} < 1.4 MeV

Coaxial 280-cc n-type Ge detector:

- Measured absolute efficiency (⁶⁰Co source from PTB with activity known to + 0.1%)
- Measured relative efficiency (9 sources)
- •Calculated efficiencies with Monte Carlo (Integrated Tiger Series - CYLTRAN code)

0.2% uncertainty for the interval 50-1400 keV

MEASUREMENT vs MONTE CARLO CALCULATIONS, E_{γ} > 800 ke¹

• METHOD

 \odot Design and produce sources for n_{th} activation

- Small absorption (< 0.1%)</p>
- Dead time (< 5%)</p>
- Statistics (> 10⁶ for γ or x-rays)
- High spectrum purity
- Minimize activation time (0.5 h)
- **o Impurity analysis essentially based on ENSDF**
 - Trace and correct impurity to 0.01% level
 - Use decay-curve analysis
 - Especially important for the K X-rays region
- **Voigt-shape (Lorentzian) correction for X-rays**
 - Done by simulation spectra, analyzed as the real spectra

• Coincidence summing correction

o Scattering correction

Monte-Carlo (Cyltran) simulation spectra and experiment

The analysis is based on:

- skilled knowledge of the HPGe detector response,
- painstaking rigor,
- *realistic uncertainties* by varying the experimental conditions

RESULTS

- 1. $\frac{^{193}\text{Ir}^{\text{m}}}{80.236(7) \text{ keV}}$, M4, α_{K}
 - values know by 2002RA45

 0104(3) (1987LI16) adopted by 2002RA45,
 092.6(9) (1988ZH11)

	α _K	$\Delta(exp:th)(\%)$
Exp (2004Ni14, 2006HA36)	103.0(8)	
Theory, hole – FO	103.5	-0.5(8)
Theory, no hole	92.3	11.6(9)

- 2. $\frac{^{191}}{1}$ Ir, 129.415(13) keV, M1+E2, δ =-0.402(7), ω_{K}
 - ω_K=0.954(9) (2005NI12)
 - ω_K=0.958(4) (1999SCZX)

	$\alpha_{\rm K}({}^{193}{\rm Ir}^{\rm m})/\alpha_{\rm K}({}^{191}{\rm Ir})$	$\Delta(exp:th)(\%)$
Exp (2005NI12)	48.3(4)	
Theory, hole – FO	48.1(2)	0.4(8)
Theory, no hole	43.0(2)	12.3(9)

3. ¹³⁴Cs^m, 127.502(3) keV, E3, ¹³⁷Ba, 661.657(3) keV,

<u>M4, α_K ratio</u>

	$\alpha_{\rm K}(^{134}{\rm Cs}^{\rm m})/\alpha_{\rm K}(^{137}{\rm Ba})$	$\Delta(exp:th)(\%)$
Exp (2007NI04)	30.01(15)	
Theory, hole – FO	29.96	0.2(5)
Theory, no hole	29.52	1.7(5)
Exp (2002RA45)	28.5(5)	

4. ¹³⁹La, 165.8575(11) keV, M1, ε(34.16 keV, LaKX) preliminary

- ε(34.16 keV, LaKX)= 0.988(7)%,
- 1.4% less than before,
- 0.7% precison, compare to ~2% before

	$^{134}Cs^m, \alpha_K$	$\Delta(exp:th)(\%)$	¹³⁸ Ba, $\alpha_{\rm K}$	$\Delta(exp:th)(\%)$
Exp (prelim.)	2.745(16)		0.0915(6)	
Theory, hole – FO	2.741	0.2(5)	0.09148	<0.1(6)
Theory, no hole	2.677	1.7(5)	0.09068	0.9(6)
EXP (2002RA45)	2.60(4)		0.0902(8)	

