

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Status of IAEA-CRP on "Updated Decay Data Library for Actinides" Filip G. Kondev

□ Brief summary of discussions held at the 2nd IAEA-CRP meeting

Status of IAEA-CRP (as of March 2007)

Results from new measurements in support of evaluation activities

2007 USNDP Meeting, BNL, November 7-9, 2007

2nd IAEA-CRP Meeting

28 – 30 March 2007, INDC(NDS)-0508, IAEA, Vienna

participants

<u>Program Officer – Mark A. Kellett,</u> <u>IAEA</u>

M.-M. Be (France)

V.P. Chechev (Russian Federation)

X. Huang (*PR China*)

F.G. Kondev (USA)

A. Luca (Romania) - absent

G. Mukherjee (India)

A.L. Nichols (IAEA)

A.K. Pearce (UK)

D.H. Abriola (*IAEA*) (observer)

What was discussed

- status of evaluations carried out by IAEA-CRP members
 - ✓ presentations were given by all participants
- status of measurements effort in support of IAEA-CRP
 - ✓ presentation from ANL
 - ✓ discussions for future measurements activities with participants from other laboratories (UK & India)
- review of evaluation procedures & rules
- allocation & re-allocation of nuclei
- list of actions

Presentations

Marie-Martine Bé, Vanessa Chisté, Christophe Dulieu

CEA Saclay /LNHB

ea	Nuclide	Status
	Cf-252	In progress
	Am-243	
	U-238	Done
	U-234	Done
	Ra-226	Review in progress
	Rn-222	Review in progress
	Po-218	Review in progress
	*At-218	Review in progress
	*Rn-218	Review in progress
	Po-214	Review in progress
	Bi-214	Review in progress
	Pb-214	Review in progress
	Po-210	
	Bi-210	
	Pb-210	Review in progress
	*TI-210	Review in progress

Presentations – cont.

Valery Chechev

V.G. Khlopin Radium Institute, 194021 Saint Petersburg, Russia

Nuclide	Status of evaluation
U-237	Completed, placed on the DDEP site
U-239	Completed, prepared for the DDEP site
Np-236	Completed, placed on the DDEP site
Np-237	In progress
Np-238	Completed, placed on the DDEP site
Np-239	Completed, minor update to be done
Pu-239	Completed, prepared for the DDEP site
Pu-241	Completed, placed on the DDEP site

discrepancies for ²³⁹U and ²³⁶Np were noted; also lack of confirmatory measurements for ²³⁷U half-life

Presentations – cont.

- X. Huang
 - ✓ ²¹³Bi & ²²⁵Ac
- □ F.G. Kondev
 - ✓ ²⁰⁶Tl & ²⁴⁶Cm
- G. Mukherjee
 - ✓ 229 Th & 233 U
- □ A.L. Nichols
 - ✓ ²⁴²Am & ²⁴⁴Am
- A. Pearce
 - ✓ ²³²U & ²²⁸Ac

IAEA-CRP on "Updated Decay Data Library for Actinides"

Current status (March 2007)

Participant	Actinides	Decay daughters
A. Luca	²³⁴ Th, ²³⁶ U	²²⁸ Ra
A. L. Nichols	²²⁸ Th, ^{242, 242m, 244, 244m} Am	²⁰⁸ Tl, ²¹² Pb, ^{212, 215} Bi, ^{212, 216} Po, ^{211, 219} At, ^{219,220} Rn, ²²⁴ Ra
A. Pearce	²³² Th, ²³¹ Pa, ²³² U	²²⁸ Ac, ²²³ Ra
F. G. Kondev	^{243, 245, 246Cm}	²⁰⁶ Hg, ^{206, 207, 209} Tl, ^{209, 211} Pb
G. Mukherjee	²²⁹ Th, ²³³ U	
MM. Bé	²⁴³ Am, ^{234, 238} U, ²⁵² Cf	²¹⁰ Tl, ²¹⁰ , ²¹⁴ Pb, ²¹⁰ , ²¹⁴ Bi, ²¹⁰ , ²¹⁴ , ²¹⁸ Po, ²¹⁸ At, ²¹⁸ , ²²⁶ Rn, ²²⁶ Ra
V. P. Chechev	²³³ Th, ²³³ Pa, ^{237, 239} U, ^{236, 236m, 237, 238, 239} Np,	²²⁷ Ac
	^{238, 239, 240, 241, 242} Pu, ²⁴¹ Am, ^{242, 244} Cm	
Huang Xiaolong	²³¹ Th, ²³⁵ U	^{221, 223} Fr, ²¹⁷ At, ²¹⁷ Rn, ²¹³ Bi, ²¹³ Po, ²²⁵ Ra, ²²⁵ Ac
Unallocated		²¹¹ Bi, ^{211, 215} Po, ²¹⁵ At

17 completed8 in progress38

45

completed
in progress

²⁰⁶Tl – ANL evaluation

²⁰⁶Tl γ–ray emission probabilities

Table 4 Experimental and evaluated y-ray emission probabilities.

Authors	Ρ _{γ1,0} , %	P _{XK} (γ2,0) % ^{a)}	Ρ _{γ2,1} , %	Comment ^{b)}
1968Zo02	0.0055 (5)			Not used
1970Zo02	0.0055 (4)			Expt.
1972CoYX	0.0041 (6)	0.08 (2)	<0.00026	Expt.
1972Gr01	0.004 (1)	0.10 (2)	< 0.001	Expt.
Adopted	0.0050 (3)	0.09 (1)	0.00013 (13)	Evaluated

a) Absolute KX-ray yield

^{b)} Expt. – experimental value used in the present evaluation. The 1968Zo02 value is superseded by 1970Zo02

 $\gamma 2,0$ is a pure E0 transition, so $P\gamma(\gamma 2,0)=0.000!!!$ $P_{\gamma+ce}(\gamma 2,0) = P_{ce}(\gamma 2,0) = (P_{KX}(\gamma 2,0) / \omega_K)/(K/T) = 0.110(14)\%$

Fluorescence yield: $\omega \kappa = 0.963$ (4)

K/T=0.85 (6) from K/L=5.7 (4) – weighted mean of 5.61 (38) (1990Tr01) and 6 (1) (1977Dr08) – note using electronics $\Omega_{\rm K}(\rm E0)$ and $\Omega_{\rm L}(\rm E0)$ factors from BrICC K/T=0.855 (excellent agreement –independent test for BrICC!!!)

²⁰⁶Tl X–ray probabilities

5.1 X-Ray Emissions

The X-ray yield in β^- decay of ²⁰⁶T1 is produced entirely in the decay of the 1166.4 keV (E0, 0⁺ \rightarrow 0⁺) transition. Contributions from the much weaker 803.06 and 363.3 keV transitions can be neglected, since their X-ray yields are several orders of magnitude smaller than that of the 1166.4 keV transition.

For the 1166.4 keV E0 ($0^+ \rightarrow 0^+$) transition, the number of vacancies in the Kshell per 100 disintegrations was determined as:

 $N_{\rm K} = P_{\rm ceK} = P_{\rm XK} \, / \omega_{\rm K} = 0.090(10) \, / \, 0.963(4) = 0.093(11) \, . \label{eq:NK}$

The corresponding number of vacancies in the L shell per 100 disintegrations was then determined as:

$$N_L = P_{ceL} + n_{KL} \times N_K = 0.0163(22) + 0.811(5) \times 0.093(11) = 0.092(11)\%$$

where $P_{ceL} = P_{ceK} / (K / L) = 0.0163(22)\%$ with K/L=5.7 (4), a weighted mean of 5.61 (38) (1990Tr01) and 6 (1) (1977Dr08). The number of X-rays per 100 disintegrations was then calculated as:

$$P_{XK} = \! \omega_K \! \times \! N_K \text{ and } P_{XL} = \widetilde{\omega}_L \! \times \! N_L$$

²⁰⁶Tl X-ray data

	E_{χ} , keV	CRP	ENDF/B-VI	ENDF/B-VII	JEFF3.1
Хк		0.090 (10)			
Kα ₂	72.8049	0.026 (3)	0.022 (5)	1.26 (24) E-5	1.38 (14) E-5
Kα ₁	74.97	0.044 (5)	0.037 (8)	2.1 (4) E-5	2.33 (23) E-5
Kβ ₃	84.451			2.5 (5) E-6	2.7 (3) E-6
$K\beta_1$	84.937	0.0150 (17)	0.013 (3)	4.9 (9) E-6	5.2 (5) E-6
Κβ ₅	85.47				
Kβ ₂	87.238		0.0032 (7)	1.8 (3) E-6	2.4 (3) E-6
$K\beta_4$	87.58	0.0045 (6)			
KO _{2,3}	8 7.911				

similar discrepancies exist for electron (Auger & CE) data

Measurements – discussed at 1st RCM

□ lifetimes and emission probabilities for a number of Cm isotopes

✓ ²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm and ²⁴⁶Cm

□ gamma-ray emission probabilities for ²³³Pa

✓ to resolve discrepancies between previous measurements for the 28.557 keV line

□ future measurements - driven by evaluators' requests

- ✓ a list of mass separated sources available at ANL
- ✓ time & resources consuming

"DO NOT WASTE VALUABLE RESOURCES ON THE MEASUREMENT OF NUCLEAR PARAMETERS OF LITTLE OR NO CONCERN" – A.L. Nichols

Half-life of a very long-lived nuclide

$$T_{1/2} = \ln 2 \times \frac{N}{A}$$

 must know absolute efficiencies, and hence, the uncertainties are potentially large, especially systematics ones!

$$T_{1/2}(n) = T_{1/2}(ref) \times \frac{A(ref)}{A(n)} \times \frac{N(n)}{N(ref)}$$

- usually relative methods have been used in order to avoid the accurate quantification of absolute efficiencies
- □ must know with a good accuracy $T_{1/2}$ (ref) (many old values need to recalibrate)
- $\square must know T_{1/2} of the parent nuclide with good accuracy$

daughter A_p, λ_p A_d, λ_d

parent

ANL has access to many massseparated sources of long-lived Pu, Am, Cm and Cf isotopes

 $\begin{array}{c} \alpha \\ 13 y \end{array} \xrightarrow{246} Cm \quad \begin{array}{c} \alpha \\ 4747 y \end{array} \xrightarrow{242} Pu \quad \begin{array}{c} \alpha \\ 3.810^5 y \end{array}$

 $\frac{A_p(t)}{A_d(t)} = \frac{\lambda_d}{\lambda_d - \lambda_n} (1 - e^{-(\lambda_d - \lambda_p)t})$

²⁴⁰Pu (test)

²⁾ MS=mass spectrometer.

I. Ahmad et al., NIM **A579** (2007) 458

Arσn

NALLABORATOR

Applied Radiation and Isotopes 55 (2001) 23-70 Decay data: review of measurements, evaluations and compilations

A.L. Nichols*

AEA Technology plc, 477 Harwell, Didcot, Oxon, OX11 0QJ, UK

Received 2 November 2000; accepted 14 November 2000

need to know $T_{1/2}$ ⁽²⁴⁶Cm) with accuracy better than 1%

Available online at www.sciencedirect.com

Applied Radiation and Isotopes 65 (2007) 335-340

Applied Radiation and Isotopes

www.elsevier.com/locate/apradiso

Measurements of the half-life of ²⁴⁶Cm and the α-decay emission probabilities of ²⁴⁶Cm and ²⁵⁰Cf

F.G. Kondev^{a,*}, I. Ahmad^b, J.P. Greene^b, M.A. Kellett^c, A.L. Nichols^c

6200

Argonne

IONAL LABORATORY

Method

Rel. activity to T1/2(244Cm)

Alpha counting

Rel. activity to T1/2(244Cm)

Rel. activity to T1/2(252Cf)

Rel. activity to T1/2(244Cm)

Several methods, T1/2(244Cm)

 E_{α} (keV)

$$R(^{245}Cm/^{249}Cf)=0.2474 (20) \%$$
$$T_{1/2}(^{249}Cf)=350.6 (21) y$$
$$T_{1/2}(^{245}Cm)=8245 (70) years$$

T1/2,Y

20000

11500

14300

7500

9320

8265

8532

8445

ΔT1/2,Y

5000

2900

1900

280

180

53

200

Reference

1954Hu50

1954Fr19

1955Br02

1957Hu76

1961Ca01

1969Me01

1971Ma32

1982Po14

18

²³³Pa

□ special interest to first IAEA-CRP (1977)

high-precision absolute measurements on P_{γ} (312 keV)

- ✓ 38.6 (5) % (Gehrke, Helmer, Reich, 1979)
- ✓ 38.6 (15) % (Poenitz, Smith, 1978)
- ✓ 41.6 (9) % (Harada et al, 2006)

 \Box inconsistencies in P_y(28.6 keV) were pointed out at 1st RCM meeting

Eγ/keV	P_{γ} (%)												
	Albridge et al. (1961)	Valkeapaa et al. (1973) ^a	Gehrke et al. (1979)	Vaninbroukx et al. (1984)	Kouassi et al. (1990) ^a	Luca et al. (2000)	Schotzig et al. (2000)	Woods et al. (2000)	Luca et al. (2002)	Shchukin et al. (2004)			
28.559(10)		0.070(8)		0.15(1)	0.075(8)	0.034(10)			0.034(10)	0.019(2)			

- there are differences between various measurements
- □ there are differences between various evaluations, e.g. ENSDF vs. DDEP
- there has been a lot of effort in the past, but the decay scheme is still discrepant

²³³Pa - source production

□ There are two ways to produce ²³³Pa

a) 232 Th(n, γ) 233 Th(β^{-}) 233 Pa(β^{-}) 233 U b) 237 Np(α) 233 Pa(β^{-}) 233 U

Np	Np	Np	Np ⁰	Np
233	234	235	236	237
U	U	U	U	U
232	233	234	235	236
Pa	Pa	Pa	Pa ^D	Pa
231	232	233	234	235

E _γ /keV	P_{γ} (%)	Th		Np	Th	Np			Np	Np
	Albridge et al. (1961)	Valkeapaa et al. (1973) ^a	Gehrke et al. (1979)	Vaninbroukx et al. (1984)	Kouassi et al. (1990) ^a	Luca et al. (2000)	Schotzig et al. (2000)	Woods et al. (2000)	Luca et al. (2002)	Shchukin et al. (2004)
28.559(10)		0.070(8)		0.15(1)	0.075(8)	0.034(10)			0.034(10)	0.019(2)

²³³Pa - source production

□ why ²³⁷Np/²³³Pa in equilibrium is NOT a good choice ✓ 29.37 keV E1 (²³⁷Np) & 28.557 keV (M1+E2) (²³³Pa)

Some preliminary results

We have not given up!

- Conclusion: wrong way to go!
- Possible solution: milk ²³³Pa from ²³⁷Np and use radiochemistry to separate them
- □ Likely the quantification of 28.557 keV gamma-ray emission probability won't solve the inconsistency!
 - \checkmark conversion electron studies
 - ✓ LEPS-LEPS, CE- γ coincidences

Also need to re-assess old data

✓ δ frequently from ICC and sub-shell ratios, but ... $\alpha_T(M1)(28.6\gamma)=31.7(5)$ by Woods et al. , while BrICC gives $\alpha_T(M1)(28.6\gamma)=29.8$ (5), e.g. 6% difference

Other work in progress

Complete decay spectroscopy of ²⁴³Cm & ²⁴⁵Cm

- \checkmark α –emission probabilities –using PIPS and magnetic spectrometer
- γ–emission probabilities using large Ge and LEPS, including conversion electron studies
- Systematic differences in α–emission probabilities collected using a) semiconductor detectors (e.g. Si(Li) and PIPS) and b) magnetic spectrographs
 - I. Ahmad, NIM A223 (1984) 319; A. Koua Aka et al., NIM A369 (1996) 477; E. Garcia-Torano et al., NIM A550 (2005) 581 and many others
 - we must understand these discrepancies systematics investigation using MA sources at ANL and comprehensive assessment of early measurements using magnetic spectrograph at ANL

Acknowledgments

□ I. Ahmad and J.P. Greene (measurements) ANL

A.L. Nichols & M.A. Kellett *IAEA, Vienna, Austria*

M.-M. Be, V.P. Chechev, X. Huang, A. Luca, G. Mukherjee & A.K. Pearce

IAEA-CRP participants

Special thanks to E. Browne (LBNL) and all colleagues involved in the review process!

Supported by the Office of Nuclear Physics, U.S. DOE