Compilation/Evaluation near Z~ 10 to 12 and N~20: "Island of Inversion"

Shamsu Basunia, LBNL

Balraj Singh, Chris Ouellet and Scott Geraedts McMaster University

Boris Pritychenko, BNL

USNDP meeting, BNL November 7-9, 2007

Brief History

- From ²⁶⁻³²Na mass measurements: C. Thibault *et al.* (PRC **12**, 1975, 644) reported higher binding energies for ³¹Na and ³²Na than expected from theoretical predictions. They suggested a strong deformed region near N~20
- Measuring first 2+ state of ³²Mg at 885 keV (PRC 19, 1979, 164) and later deducing mass excess for ³¹Mg and ³²Mg (Nucl. Phys. A394, 1983, 378): C. Détraz et al. provided additional experimental support for the deformed region near N~20
- E. K. Warburton et al. (PRC **41**, 1990, 1147) used the term "Island of Inversion" for nuclei $Z \cong 10-12$ and $N \cong 18-22$ with further evidence from binding energy calculations
- ➤ K. Heyde and J. L. Wood (J. Phys. G. **17**, 1991, 135) also came to the conclusion of low-lying 0+ intruder states and related shape co-existence in the neutron-rich N=20 nuclei from an independent review on binding energies

Experimental facility

- New experimental (RIB) facilities have allowed spectroscopic studies of these exotic neutron-rich nuclides in recent years
- Main experimental facilities:
 - NSCL, MSU, USA
 - GANIL, France
 - ISOLDE/CERN, Switzerland
 - RIKEN, Japan
 - GSI, Germany

Experiment

- ➤ Production and spectroscopy involves:
 - Fragmentation of primary beam
 - Separation and acceleration of the secondary beam, and
 - Finally further fragmentation or knock-out reactions using a secondary target
 - Gamma ray detection by large γ -ray detector array and particles by 4π particle detector

Properties include:

- Largeanomalousbindingenergy
- Intruderground stateor mixing
- Prolate deformation

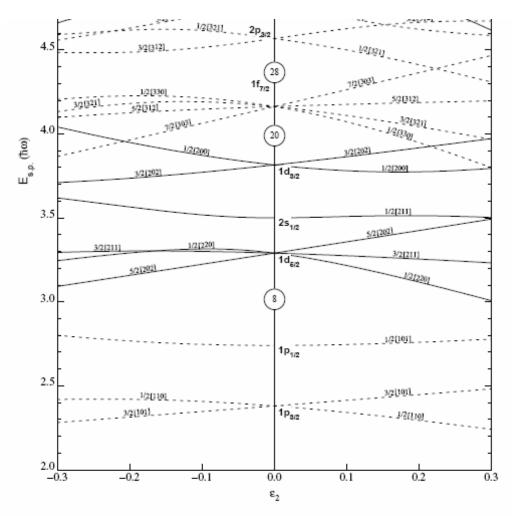
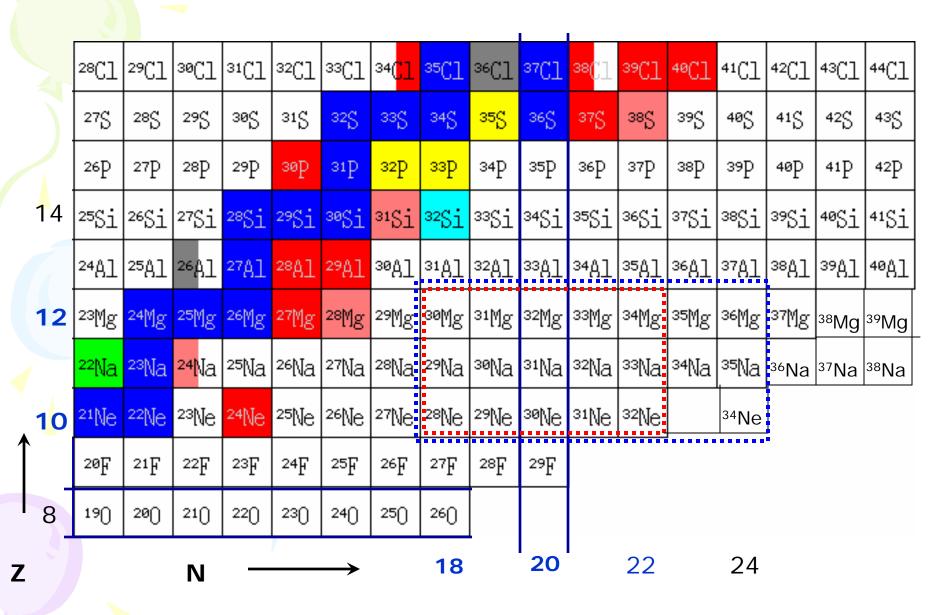



Figure 4. Nilsson diagram for protons or neutrons, Z or N \leq 50 (ϵ_4 = 0).

- Spectroscopic studies include:
 - Excited state energies (Large γ-detector arrays)
 - Ground-state spins and parities
 - Precision mass measurements (Penning-trap)
 - Cross sections for population of levels
 - Transition Probabilities, Log ft values
 - Static Magnetic and Quadrupole moments etc.
 - Ground State nuclear radius
- Focus: Study of nuclear properties and boundary/edge of the "Island of Inversion"

Current ENSDF Status

³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg
Jan,99	To be Submitted	Mar,04	Feb,07	To be Submitted	Jan,99	Sep,07
²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na
Jan,99	Jan,99	Oct,06	Jan,99	Jan,99	Jan,99	Jan,99
²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne
Jan,99	Jan,99	Dec,06	Oct,06	Jan,99		Oct,06

Importance

> A current subject of interest

RAPID COMMUNICATIONS

PHYSICAL REVIEW C, VOLUME 65, 061304(R)

Structure of the "island of inversion" nucleus 33Mg

B. V. Pritychenko, ^{1,2}* T. Glasmacher, ^{1,2} P. D. Cottle, ³ R. W. Ibbotson, ^{1,†} K. W. Kemper, ³ L. A. Riley, ⁴ A. Sakharuk, ^{1,‡} H. Scheit, ^{1,2,§} M. Steiner, ¹ and V. Zelevinsky ^{1,2}

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824
²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
³Department of Physics, Florida State University, Tallahassee, Florida 32306
⁴Department of Physics and Astronomy, Earlham College, Richmond, Indiana 47374
(Received 4 March 2002; published 24 June 2002)

The excitation of the 485-keV state of the neutron-rich "island of inversion" nucleus ³³Mg was measured in intermediate-energy Coulomb excitation. The result of the present experiment suggests that the 485-keV state is a rotational excitation built on the ground state, not a state with different intrinsic structure as proposed previously. If the 485-keV state is indeed a rotational excitation, then the deformation of ³³Mg is similar to that of other nuclei in the island of inversion.

DOI: 10.1103/PhysRevC.65.061304 PACS number(s): 25.70.De, 27.30.+t, 23.20.Js, 21.60.Cs

The "island of inversion" in the neutron-rich isotopes near ³²Mg is a spectacular example of shape coexistence in nuclei, a severe test of our understanding of the mechanism of this phenomenon, and an important challenge for experiother nuclei in the island of inversion. A recent β -decay study of 33 Mg [17] has suggested that the 485-keV excited state has a different intrinsic structure from the ground state. In this latter study the ground state of N=21 33 Mg is as-

doi:10.1088/1742-6596/49/1/037

Structure of Exotic Nuclei and Nuclear Forces

Transition to the Island of Inversion: Study of Excited States in ²⁸⁻³⁰Ne

P. Fallon¹, E. Rodriguez-Vieitez^{1,2}, D. Bazin³, C. M. Campbell^{3,4}, J. M. Cook^{3,4}, R.M. Clark¹, D. C. Dinca^{3,4}, A. Gade^{3,4}, T. Glasmacher^{3,4}, I-Y. Lee, ¹ A. O. Macchiavelli¹ W. F. Mueller³, S. G. Prussin², M. Wiedeking¹, K. Yoneda^{3,4}

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

²Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA

³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

⁴Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

pfallon@lbl.gov

Abstract. An experiment was conducted at the National Superconducting Cyclotron Laboratory (MSU) to study N~20 Ne and Na nuclei. A 140 MeV/A ⁴⁸Ca primary beam

PRL 99, 072502 (2007)

Spectroscopy of ³⁶Mg: Interplay of Normal and Intruder Configurations at the Neutron-Rich Boundary of the "Island of Inversion"

A. Gade, ^{1,2} P. Adrich, ¹ D. Bazin, ¹ M. D. Bowen, ^{1,2} B. A. Brown, ^{1,2} C. M. Campbell, ^{1,2} J. M. Cook, ^{1,2} S. Ettenauer, ¹ T. Glasmacher, ^{1,2} K. W. Kemper, ³ S. McDaniel, ^{1,2} A. Obertelli, ¹ T. Otsuka, ^{4,5} A. Ratkiewicz, ^{1,2} K. Siwek, ^{1,2} J. R. Terry, ^{1,2} J. A. Tostevin, ⁶ Y. Utsuno, ⁷ and D. Weisshaar¹

National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
³Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
⁴Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033, Japan
⁵RIKEN, Hirosawa, Wako-shi, Saitama 351-0198, Japan

⁶Department of Physics, School of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

> ⁷Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan (Received 12 February 2007; published 17 August 2007)

Compilation/Evaluation

- Horizontal/Nuclide?
- Process, work plan:
 - Evaluation procedures: as for ENSDF
 - Review: continuous or one-year cycle for relevant nuclei
 - Include Author comments of the measured quantity and calculation relevant to the properties of the "Island of Inversion"
 - Consider relevant theory papers?

Compilation/Evaluation and Dissemination

- Evaluation LBNL and McMaster
 - Current responsibility in this mass region:
 - LBNL: A = 21-30: expect to finish relevant nuclei by March, 2008
 - McMaster: A = 31- 44: expect to finish relevant nuclei by December, 2007
- Dissemination:
 - Web base: NNDC