

CSEWG Annual Meeting, Nov 6-8, 2007

Status of WPEC Subgroup 26 Work on Covariances

P. Oblozinsky and M. Dunn NNDC and ORNL

oblozinsky@bnl.gov

Brookhaven Science Associates

Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations

WPEC Subgroup 26: chair Salvatores, established in 2005

- Identify nuclear data needs using well justified technical procedures
- Perform sensitivity analysis for Na, gas and Pb cooled fast reactors
- Considerable amount of covariance data needed

Requested covariance data

- 19 actinides, 26 structural, 8 light nuclei = 53 materials in total
- (n,el), (n,inl), (n,2n), capture, (n,f), nu-bar
- 15-energy groups

Covariance data contributed by BOLNA labs

- BNL: 36 materials (Atlas-Empire-Kalman estimates)
- ORNL/LANL: ^{235,238}U and ²³⁹Pu (evaluations for VII.1)
- NRG Petten: Pb isotopes (Monte Carlo estimates)
- ANL: Light nuclei (educated guess)

Covariance methodology used by BNL Atlas-EMPIRE-KALMAN

Nubars:

- v-bar energy dependence approximated by a linear function.
- Thermal & higher energy data considered, propagated with KALMAN.

BNL covariances

Should be treated as preliminary, review is underway

Low energies

- Thermal capture and fission: Comparison with $\Delta \sigma_{thermal}$ in Atlas done
- Resonance integrals: Comparison with ΔRI in Atlas done
- In quite a few cases considerable differences → Review is underway

Fast neutron region

- (n,el), (n,2n) and (n,γ) looks reasonable
- (n,n') for ⁵⁶Fe too high, probably also ²⁸Si, ²³Na \rightarrow Review is underway
- (n,f) higher Pu to be checked, Cm may be too high \rightarrow Review underway

Nubars

- v-bar energy dependence approximated by a linear function
- Thermal and higher energy data considered, propagated with KALMAN
- Review is underway

BNL covariances: Example (n,n') for ⁵⁶Fe and ²³Na particularly important

ORNL-LANL covariances

235,238U and 239Pu

- ORNL resonance analyses with SAMMY R-matrix code to produce new RPCM for ²³⁵U, ²³⁸U and ²³⁹Pu
 - Retroactive resonance analysis for ²³⁵U and ²³⁸U no change to existing ENDF/B File 2 parameters
 - New resonance evaluation for ²³⁹Pu
- LANL high-energy GNASH-**KALMAN** analyses
 - **Experimental errors** (statistical and systematic) are from EXFOR and literature
 - Correlation from systematic errors

6

800

600

400

200

O

²³⁵U Total Correlation

ORNL-LANL covariances

^{235,238}U and ²³⁹Pu, some examples

Ignatyuk: Covariances for actinides Comparison with BROND-3

Uncertainties of the fission-neutron multiplicities for U-235

Multiplicities averaged over the Cf-252 fissionneutron spectrum

	U-235	U-238	Pu-239
ENDF/B-VII uncertainty	2.647 0.163%	2.619 0.888%	3.166 0.155
BROND-3 uncertainty	2.718 0.224%	2.668 0.428%	3.230 0.223%

SG26 Concluding Meeting Prague, October 19, 2007

Covariance/uncertainty data needs and issues

- (n,n'): ²³⁸U (2-3% !!), ⁵⁶Fe (3-6%), ²³Na (4-10%), also Pb isotopes
- Pu: mostly ^{240,241}Pu, fission, nubar, capture (often < 2-3% needed)
- ²³⁸U and ²³⁹Pu capture (~1-500 keV), uncertainties to be reduced by factor of 2
- MA: ^{242m,243} Am, ²⁴³Cm fission (3-7%, for burner), also (n,n') for ²⁴³Am
- Low values for major actinides should be resolved (e.g. ²³⁹Pu(n,f) is well below 1%) → already addressed in Oct 2007 report by LANL
- Other ...

Additional requirements for covariance data

- Fission energy spectra
- mu-bar (scattering average cosine) for ¹⁶O, ²³Na and ⁵⁶Fe
- Cross correlations

SG26 report and future work

- Draft already available, final version in spring 2008
- Follow-up SG proposed: Methods and issues for the combined use of integral experiments and covariance data

