CSEWG/USNDP, BNL, Nov. 6-9, 2007

How does KALMAN work?

T. Kawano Nuclear Physics Group T-16, LANL

Interpolation

Uncertainty reduction by interpolation

- Evaluated covariance depends on the interpolation method.
 - 0-th order Spline interval average
 - 1-st order Spline data change smoothly like a linear function
 - function forms (model calculation) the function describes the data tendency

The covariance matrix of evaluated quantity is a consequence of error propagation from experimental data, however those are "collapsed" data by the fitting function adopted.

Model Parameter Fitting

- Interpolation is made with some physical background
- We believe that the mode is true
 - the fitting function is a data generation model
- Correlation exists even if experimental data are uncorrelated

Covariance Evaluation with the KALMAN code

- includes
 - Statistical / systematic errors in the experimental data
 - correlation from the systematic errors
 - Constraint by a physical model employed
 - correlation from a model which is used for interpolation
- has advantages:
 - Inter/extra-polation of uncertainties to the region where no experimental data are available
 - Covariances can be generated from an assumed parameter covariance

KALMAN Calculation (II)

Error propagation from experimental data to model parameters

$$\mathbf{P} = (\mathbf{C}^t \mathbf{V}^{-1} \mathbf{C})^{-1} \tag{1}$$

propagation from the parameters to calculated values

$$\mathbf{M} = \mathbf{C}\mathbf{P}\mathbf{C}^t \tag{2}$$

where V, P, M are the covariance matrices of experimental data, model parameter, and calculated values, C is the sensitivity matrix whose elements are $\partial f/\partial x$.

The most time-consumptive part is to construct the matrix **C**.

KALMAN Calculation (III)

Bayesian Method

$$\begin{aligned} x_1 &= x_0 + \mathsf{P}\mathsf{C}^t \mathsf{V}^{-1} \left(y - f(x_0) \right) \\ &= x_0 + \mathsf{X}\mathsf{C}^t \left(\mathsf{C}\mathsf{X}\mathsf{C}^t + \mathsf{V} \right)^{-1} \left(y - f(x_0) \right) \\ \mathbf{P} &= \left(\mathsf{X}^{-1} + \mathsf{C}^t \mathsf{V}^{-1} \mathsf{C} \right)^{-1} \\ &= \mathsf{X} - \mathsf{X}\mathsf{C}^t \left(\mathsf{C}\mathsf{X}\mathsf{C}^t + \mathsf{V} \right)^{-1} \mathsf{C}\mathsf{X} \end{aligned}$$
(3)

where x_0 and x_1 are prior / posterior vectors of the parameter, y is the experimental data vector.

f(x) is the vector which includes calculated values with the parameter x, and usually this is a non-linear function. It can be linearized by the Taylor-series expansion near x_0 :

$$y = f(x) \simeq f(x_0) + \mathbf{C}(x - x_0) \tag{5}$$

What we are doing ?

Inter/Extraporation of experimental uncertainties

- Calculate sensitivities of model parameters
- Estimate uncertainties in the parameters by experimental data
- Calculate uncertainties in the cross sections by the parameter uncertainties

Covariance for ²³²Th total cross section

Error Propagation (Prior Covariance)

From Model Parameters to Cross-Sections

Parameters, p_j , $0 \le j \le M$ with uncertainties of δp_j

Observable, $(x_i, y_i), 0 \le i \le N$ with uncertainties of z_i

Our data generation model, y = f(x; p)

Taylor Expansion Method

$$(\delta f)^2 = \sum_{j} \left(\delta p_j \frac{\partial f}{\partial p_j} \right)^2 + \sum_{k \neq l} \operatorname{cov}(p_k, p_l) \frac{\partial f}{\partial p_k} \frac{\partial f}{\partial p_l}$$

Monte Carlo Method

$$(\delta f)^{2} = \frac{1}{K} \sum_{k} \left\{ f(p^{(k)}) - f(p^{(0)}) \right\}^{2}$$

Sensitivities : Taylor Expansion Method

Example — Lorentzian

$$f(x; a, b, c) = \frac{a}{(x-b)^2 + c}$$
$$\frac{\partial f}{\partial a} = \frac{1}{(x-b)^2 + c}$$
$$\frac{\partial f}{\partial b} = \frac{2a(x-b)}{\left\{(x-b)^2 + c\right\}^2}$$
$$\frac{\partial f}{\partial c} = \frac{-a}{\left\{(x-b)^2 + c\right\}^2}$$
$$a = 2, b = 5, c = 3$$

Calculated Uncertainties

Comparison of Two Methods

10% uncertainties for each parameter without correlations are assumed.

KALMAN Method

Re-normalize the Parameter Covariance

Select Parameters According to Criteria

1% at x = 8 1% at x = 4 0 = 0

About 3,000 cases out of 100,000 sampled.

Uncertainties Calculated with Selected Parameters

If calculations which are larger than 1% are rejected, the unertainty minima becomes 0.57%, not 1%, because the data distribution is a Gaussian. Rejection at about 2% level gives 1% uncertainty at the minimum.

Re-normalize the Parameter Covariance

KALMAN Method — Multiple Data Points, II

More Data Points

Data at 1,2 no correlat	2,3,=,9, 19 ion	%	2 no corr 50%
a 2.0	0.6% 100		full corr. —
b 5.0	0.1% 0	100	
c 3.0	1.2% 85	0 100	
50% correlation a 2.0 0.8% 100 b 5.0 0.1% 0.100			
a 2.0	0.8% 100		
b 5.0	0.1% 0	100	C C C C C C C C C C C C C C C C C C C
c 3.0	0.8% 45	0 100	
full correlat	ion		
a 2.0	1.0% 1	00	
b 5.0	0.004%	0 100	
c 3.0	0.48	2 0 100	0 1 2 3 4 5 6 7 8 9 10

KALMAN Method

Parameter SpaceObservable Space
$$p$$
; X σ ; V $\mathbf{P} = \left(\mathbf{X}^{-1} + \mathbf{C}^t \mathbf{V}^{-1} \mathbf{C}\right)^{-1}$ $\mathbf{M} = \mathbf{C} \mathbf{P} \mathbf{C}^t$

Monte-Carlo Method in the Data Space

Parameter Space *p*; **X**

Observable Space σ ; V W from MC with assumed X, or $\mathbf{M} = \left(\mathbf{W}^{-1} + \mathbf{V}^{-1}\right)^{-1}$

Backward-Forward Monte-Carlo Method (E.Bauge)

Parameter Space *p*; uniform

Observable Space σ ; V W from MC calculate χ_i^2 for each sampled p_i weighing average, $w_i = f(\chi_i^2) \rightarrow X$ M from MC wtih X

p; X