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Interpolation

Uncertainty reduction by interpolation

•• Evaluated covariance depends on the interpolation method.

•• 0-th order Spline — interval average
•• 1-st order Spline — data change smoothly like a linear function
•• function forms (model calculation) — the function describes the data tendency
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The covariance matrix of eval-
uated quantity is a conse-
quence of error propagation
from experimental data, how-
ever those are “collapsed”
data by the fitting function
adopted.



KALMAN Calculation (I)

Model Parameter Fitting

•• Interpolation is made with some physical background•• We believe that the mode is true

•• the fitting function is a data generation model•• Correlation exists even if experimental data are uncorrelated

Covariance Evaluation with the KALMAN code

•• includes

•• Statistical / systematic errors in the experimental data
• correlation from the systematic errors
•• Constraint by a physical model employed
• correlation from a model which is used for interpolation•• has advantages:

•• Inter/extra-polation of uncertainties to the region where no experimental data
are available•• Covariances can be generated from an assumed parameter covariance



KALMAN Calculation (II)

Error propagation from experimental data to model parameters

P = (CtV−1C)−1 (1)

propagation from the parameters to calculated values

M = CPCt (2)

where V, P, M are the covariance matrices of experimental data, model parameter, and
calculated values, C is the sensitivity matrix whose elements are ∂f/∂x .

The most time-consumptive part is to construct the matrix C.



KALMAN Calculation (III)

Bayesian Method

x1 = x0 + PCtV−1 (y − f(x0))

= x0 + XCt
(
CXCt + V

)−1
(y − f(x0)) (3)

P =
(
X−1 + CtV−1C

)−1

= X− XCt
(
CXCt + V

)−1
CX (4)

where x0 and x1 are prior / posterior vectors of the parameter, y is the experimental
data vector.

f(x) is the vector which includes calculated values with the parameter x, and usually
this is a non-linear function. It can be linearized by the Taylor-series expansion near x0:

y = f(x) ' f(x0) + C(x− x0) (5)



What we are doing ?

Inter/Extraporation of experimental uncertainties

•• Calculate sensitivities of model parameters

•• Estimate uncertainties in the parameters by experimental data

•• Calculate uncertainties in the cross sections by the parameter uncertainties

f(E;p)
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Example

Covariance for 232Th total cross section
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Error Propagation (Prior Covariance)

From Model Parameters to Cross-Sections

Parameters, pj,0 ≤ j ≤M with uncertainties of δpj

Observable, (xi, yi),0 ≤ i ≤ N with uncertainties of zi

Our data generation model, y = f(x;p)

Taylor Expansion Method

(δf)2 =
∑

j

(
δpj

∂f

∂pj

)2

+
∑

k 6=l

cov(pk, pl)
∂f

∂pk

∂f

∂pl

Monte Carlo Method

(δf)2 =
1

K

∑

k

{
f(p(k))− f(p(0))

}2



Sensitivities : Taylor Expansion Method

Example — Lorentzian

f(x; a, b, c) =
a

(x− b)2 + c
∂f

∂a
=

1

(x− b)2 + c
∂f

∂b
=

2a(x− b)
{
(x− b)2 + c

}2

∂f

∂c
=

−a
{
(x− b)2 + c

}2
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Calculated Uncertainties

Comparison of Two Methods
Taylor Expansion Monte Carlo
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KALMAN Method

Re-normalize the Parameter Covariance

data : y = 0.1667±1% at x = 8

a 2.0 9.3% 100

b 5.0 3.8% -96 100

c 3.0 10.0% 36 22 100

data : y = 0.5± 1% at x = 4

a 2.0 9.3% 100

b 5.0 4.5% 76 100

c 3.0 9.6% 11 -55 100
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Monte-Carlo — Rejection Method

Select Parameters According to Criteria

1% at x = 8 1% at x = 4
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Uncertainties Calculated with Selected Parameters

Monte Carlo KALMAN
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If calculations which are larger than 1% are rejected, the unertainty minima becomes
0.57%, not 1%, because the data distribution is a Gaussian. Rejection at about 2% level
gives 1% uncertainty at the minimum.



KALMAN Method — Multiple Data Points, I

Re-normalize the Parameter Covariance
no correlation
a 2.0 4.5% 100

b 5.0 0.9% -94 100

c 3.0 8.9% 99 -95 100

50% correlation
a 2.0 4.5% 100

b 5.0 0.9% -96 100

c 3.0 8.9% 98 -98 100

full correlation
a 2.0 4.5% 100

b 5.0 0.9% -98 100

c 3.0 8.9% 98 -99 100  0
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KALMAN Method — Multiple Data Points, II

More Data Points
Data at 1,2,3,= . . .,9, 1%
no correlation
a 2.0 0.6% 100

b 5.0 0.1% 0 100

c 3.0 1.2% 85 0 100

50% correlation
a 2.0 0.8% 100

b 5.0 0.1% 0 100

c 3.0 0.8% 45 0 100

full correlation
a 2.0 1.0% 100

b 5.0 0.004% 0 100

c 3.0 0.4% 2 0 100
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Parameter Space ←→ Data Space

KALMAN Method
Parameter Space Observable Space
p; X σ; V

P =
(
X−1 + CtV−1C

)−1
M = CPCt

Monte-Carlo Method in the Data Space
Parameter Space Observable Space
p; X σ; V

W from MC wtih assumed X, or

M =
(
W−1 + V−1

)−1

Backward-Forward Monte-Carlo Method (E.Bauge)
Parameter Space Observable Space
p; uniform σ; V

W from MC
calculate χ2

i for each sampled pi

weighing average, wi = f(χ2
i )→ X

p; X M from MC wtih X


