How does KALMAN work ?

T. Kawano
Nuclear Physics Group T-16, LANL

Interpolation

Uncertainty reduction by interpolation

- Evaluated covariance depends on the interpolation method.
- 0-th order Spline - interval average
- 1-st order Spline - data change smoothly like a linear function
- function forms (model calculation) - the function describes the data tendency

The covariance matrix of evaluated quantity is a consequence of error propagation from experimental data, however those are "collapsed" data by the fitting function adopted.

- KALMAN Calculation (I)

Model Parameter Fitting

- Interpolation is made with some physical background
- We believe that the mode is true
- the fitting function is a data generation model
- Correlation exists even if experimental data are uncorrelated

Covariance Evaluation with the KALMAN code

- includes
- Statistical / systematic errors in the experimental data
- correlation from the systematic errors
- Constraint by a physical model employed
- correlation from a model which is used for interpolation
- has advantages:
- Inter/extra-polation of uncertainties to the region where no experimental data are available
- Covariances can be generated from an assumed parameter covariance

KALMAN Calculation (II)

Error propagation from experimental data to model parameters

$$
\begin{equation*}
\mathbf{P}=\left(\mathbf{C}^{t} \mathbf{V}^{-1} \mathbf{C}\right)^{-1} \tag{1}
\end{equation*}
$$

propagation from the parameters to calculated values

$$
\begin{equation*}
\mathbf{M}=\mathbf{C P C}^{t} \tag{2}
\end{equation*}
$$

where V, P, M are the covariance matrices of experimental data, model parameter, and calculated values, \mathbf{C} is the sensitivity matrix whose elements are $\partial f / \partial x$.

The most time-consumptive part is to construct the matrix \mathbf{C}.

KALMAN Calculation (III)

Bayesian Method

$$
\begin{align*}
& x_{1}=x_{0}+\operatorname{PC}^{t} \mathbf{V}^{-1}\left(y-f\left(x_{0}\right)\right) \\
& =x_{0}+\mathbf{X C}^{t}\left(\mathbf{C X C}^{t}+\mathbf{v}\right)^{-1}\left(y-f\left(x_{0}\right)\right) \tag{3}\\
& \mathbf{P}=\left(\mathbf{x}^{-1}+\mathbf{c}^{t} \mathbf{v}^{-1} \mathbf{c}\right)^{-1} \\
& =\mathbf{x}-\mathbf{X C}^{t}\left(\mathbf{C X C}^{t}+\mathbf{v}\right)^{-1} \mathbf{c x} \tag{4}
\end{align*}
$$

where x_{0} and x_{1} are prior / posterior vectors of the parameter, \boldsymbol{y} is the experimental data vector.
$\boldsymbol{f}(\boldsymbol{x})$ is the vector which includes calculated values with the parameter \boldsymbol{x}, and usually this is a non-linear function. It can be linearized by the Taylor-series expansion near x_{0} :

$$
\begin{equation*}
y=f(x) \simeq f\left(x_{0}\right)+\mathbf{C}\left(x-x_{0}\right) \tag{5}
\end{equation*}
$$

| What we are doing?

Inter/Extraporation of experimental uncertainties

- Calculate sensitivities of model parameters
- Estimate uncertainties in the parameters by experimental data
- Calculate uncertainties in the cross sections by the parameter uncertainties

Example

Covariance for ${ }^{232}$ Th total cross section

Neutron Energy [MeV]

Error Propagation (Prior Covariance)

From Model Parameters to Cross-Sections

Parameters, $p_{j}, 0 \leq j \leq M$ with uncertainties of δp_{j}
Observable, $\left(x_{i}, y_{i}\right), 0 \leq i \leq N$ with uncertainties of z_{i}
Our data generation model, $y=f(x ; \boldsymbol{p})$
Taylor Expansion Method

$$
(\delta f)^{2}=\sum_{j}\left(\delta p_{j} \frac{\partial f}{\partial p_{j}}\right)^{2}+\sum_{k \neq l} \operatorname{cov}\left(p_{k}, p_{l}\right) \frac{\partial f}{\partial p_{k}} \frac{\partial f}{\partial p_{l}}
$$

Monte Carlo Method

$$
(\delta f)^{2}=\frac{1}{K} \sum_{k}\left\{f\left(\boldsymbol{p}^{(k)}\right)-f\left(\boldsymbol{p}^{(0)}\right)\right\}^{2}
$$

Sensitivities: Taylor Expansion Method

Example - Lorentzian

$$
\begin{aligned}
f(x ; a, b, c) & =\frac{a}{(x-b)^{2}+c} \\
\frac{\partial f}{\partial a} & =\frac{1}{(x-b)^{2}+c} \\
\frac{\partial f}{\partial b} & =\frac{2 a(x-b)}{\left\{(x-b)^{2}+c\right\}^{2}} \\
\frac{\partial f}{\partial c} & =\frac{-a}{\left\{(x-b)^{2}+c\right\}^{2}} \\
a=2, b=5, c & =3
\end{aligned}
$$

| Calculated Uncertainties

Comparison of Two Methods

Taylor Expansion

Monte Carlo

10% uncertainties for each parameter without correlations are assumed.

\| KALMAN Method

Re-normalize the Parameter Covariance

```
data : y = 0.1667 \pm 1% at x=8
    a 2.0 9.3% 100
    b 5.0 3.8% -96 100
    c 3.0 10.0% 36 22 100
data: }y=0.5\pm1%\mathrm{ at }x=
    a 2.0 9.3% 100
    b 5.0 4.5% 76 100
    c 3.0 9.6% 11 -55 100
```


| Monte-Carlo — Rejection Method

Select Parameters According to Criteria

About 3,000 cases out of 100,000 sampled.

Uncertainties Calculated with Selected Parameters

KALMAN

If calculations which are larger than 1% are rejected, the unertainty minima becomes 0.57%, not 1%, because the data distribution is a Gaussian. Rejection at about 2% level gives 1% uncertainty at the minimum.

| KALMAN Method — Multiple Data Points, I

Re-normalize the Parameter Covariance
no correlation
a 2.0
4.5%
100
b 5.0
0.9%
-94 100
с 3.0
8.9%
99-95 100

50\% correlation
a 2.0
4.5%
100
b 5.0
0.9%
-96 100
C 3.0
8.9%
98-98 100
full correlation
a 2.0
4.5%
100
b 5.0
0.9%
-98 100
C 3.0
8.9%
98-99 100

KALMAN Method — Multiple Data Points, II

More Data Points

Data at $1,2,3,=\ldots, 9,1 \%$ no correlation

a 2.0	0.6%	100			
b	5.0	0.1%	0	100	
c	3.0	1.2%	85	0	100

50\% correlation

a	2.0	0.8%	100		
b	5.0	0.1%	0	100	
c	3.0	0.8%	45	0	100

full correlation

a	2.0	1.0%	100		
b	5.0	0.004%	0	100	
c	3.0	0.4%	2	0	100

Parameter Space \longleftrightarrow Data Space

KALMAN Method

Parameter Space
$p ; \mathbf{X}$
$\mathbf{P}=\left(\mathbf{X}^{-1}+\mathbf{C}^{t} \mathbf{V}^{-1} \mathbf{C}\right)^{-1}$

Observable Space
σ; V
$\mathbf{M}=\mathbf{C P C}^{t}$

Monte-Carlo Method in the Data Space

Parameter Space
$p ; \mathbf{X}$

Observable Space
σ; V
\mathbf{W} from MC wtih assumed \mathbf{X}, or
$\mathbf{M}=\left(\mathbf{W}^{-1}+\mathbf{V}^{-1}\right)^{-1}$

Backward-Forward Monte-Carlo Method (E.Bauge)

Parameter Space
p; uniform
$p ; \mathbf{X}$

Observable Space
σ; V
W from MC
calculate χ_{i}^{2} for each sampled p_{i}
weighing average, $w_{i}=f\left(\chi_{i}^{2}\right) \rightarrow \mathbf{X}$
\mathbf{M} from MC wtih \mathbf{X}

