CSEWG & USNDP Nov. 6-9, 2007, BNL, USA

ENDF-6 format proposal related to JENDL PKA/KERMA File

Tokio Fukahori Nuclear Data Center, Japan Atomic Energy Agency fukahori.tokio@jaea.go.jp

- Purpose

to supply fundamental data for the estimation of the radiation damage in solid materials

ATOMIC ENERGY AGENCY

- Incident Particle: neutron (< 50 MeV)
- Elements Included in the File: 29 elements, 78 isotopes
 H, Li, Be, B, C, N, O, Na, Mg, AI, Si, CI, K, Ca, Ti, V,
 Cr, Mn, Fe, Co, Ni, Cu, Ge, Zr, Nb, Mo, W, Pb, Bi

Producing Method of PKA Spectrum

General: ESPERANT Code

Processed from Neutron Data in the JENDL High Energy File up to 50 MeV by Using Effective Single Particle Emission Approximation (ESPEA)

JAPAN ATOMIC ENERGY AGENCY

for Light Mass Nuclides Nuclear Data and PKA Spectra are evaluated simultaneously by SINFUL/DDX Code.

JAPAN ATOMIC ENERGY AGENCY

Compilation of threshold energy for displacement: ε_{d}

Atomic Number	Symbol	eV]	Atomic Number	Symbol	eV]
4	Be	31	27	Co	40
6	С	31	28	Ni	40
12	Mg	25	29	Cu	40
13	Al	27	40	Zr	40
14	Si	25	41	Nb	40
20	Ca	40	42	Мо	60
22	Ti	40	47	Ag	60
23	V	40	74	W	90
24	Cr	40	79	Au	30
25	Mn	40	82	Pb	25
26	Fe	40		others	25

DPA Cross Sections of ²⁷Al and ⁵⁶Fe

(JAEA

ERGY AGENCY

KERMA Factors of ²⁷Al and ⁵⁶Fe

JAEA

FRGY AGENCY

Target Quantities and Proposal for MF Numbers

MF	quantities
3	cross sections and KERMA factor
4	angular distributions for discrete levels
6	double-differential light particles and PKA cross sections
63	DPA cross sections
66	damage energy spectra

Effective Single Particle Emission Approximation (ESPEA)

- C, L : CMS and LAB
- p, t, 1, 2: incident particle, target nucleus, outgoing particle and residual nucleus

E, V, m, θ : energy, velocity, mass and emitted angle ($\mu = \cos \theta$)**DDX**_{1C}(E_{pL}, E_{1C}, μ_{1C}):**DDX of emitted particle in CMS (given)DDX**_{2C}(E_{pL}, E_{2C}, μ_{2C}):PKA spectrum in CMS

Effective Single Particle Emission Approximation (ESPEA)

JAPAN ATOMIC ENERGY AGENCY

Normalization Factor for ESPEA

$$\boldsymbol{R} = \frac{\boldsymbol{\sigma}_{R}}{\sum_{x} \int_{\boldsymbol{\varepsilon}_{x}^{(\min)}} d\boldsymbol{\varepsilon}_{x} \int d\boldsymbol{\mu}_{x} \boldsymbol{\sigma}_{x} (\boldsymbol{E}_{p}^{L}, \boldsymbol{\varepsilon}_{x}, \boldsymbol{\mu}_{x})}$$

 $\sigma_{\rm R}$:total reaction cross section $\sigma_{\rm x}$:each particle emission channel $\varepsilon_{\rm x}^{(min)}$:lower limit of energy for spectrum
considered.

$$\int_{\varepsilon_x^{(\min)}} \varepsilon_x f_x(\varepsilon_x) d\varepsilon_x = \left[\frac{m_t}{m_p + m_t} E_p^L + Q_x\right] / \left[1 + \left(\frac{m_{1x}}{m_{2x}}\right)^2\right]$$
$$\int_0^\infty f_x(\varepsilon_x) d\varepsilon_x = 1$$

 Q_x :Q-value of reaction x f_x :normalized DDX1C of reaction x

Effective Single Particle Emission Approximation (ESPEA)

Particle Multiplicity

(JAEA

JAPAN ATOMIC ENERGY AGENCY

- Purpose

to supply the PKA data to the FENDL-2 project as a trial task of ESPERANT, processing from the JENDL Fusion File below 20 MeV

JAPAN ATOMIC ENERGY AGENCY

Included Nuclides (69 isotopes)
 ¹⁹F, ²⁷AI, ²⁸⁻³⁰Si, ^{40,42-44,46,48}Ca, ^{46-48,50}Ti, ⁵¹V, ^{50,52-54}Cr, ⁵⁵Mn, ^{54,56-58}Fe, ⁵⁹Co, ^{58,60-62,64}Ni, ^{63,65}Cu, ⁷⁵As, ^{90-92,94,96}Zr, ⁹³Nb, ^{92,94-98,100}Mo, ^{121,123}Sb, ^{112,114-120,122,124}Sn, ^{182-184,186}W, ^{204,206-208}Pb, ²⁰⁹Bi

Test of ESPERANT Code

JAPAN ATOMIC ENERGY AGENCY

Particle and PKA Spectra of ²⁷Al at 10 and 20 MeV

Test of ESPERANT Code

JAPAN ATOMIC ENERGY AGENCY

Particle and PKA Spectra of ⁵⁶Fe at 10 and 20 MeV

Test of ESPERANT Code

JAPAN ATOMIC ENERGY AGENCY

AEA

PKA Spectra of ²⁷Al and ⁵⁶Fe at Other Incident Energies

KERMA Factor of ¹²C

JAPAN ATOMIC ENERGY AGENCY