

AMPX Cross-Section Processing Status

Michael E. Dunn, Dorothea Wiarda, Goran Arbanas, Sedat Goluoglu Nuclear Science and Technology Division

Cross Section Evaluation Working Group Meeting Brookhaven National Laboratory November 6– 8, 2007

AMPX Nuclear Data

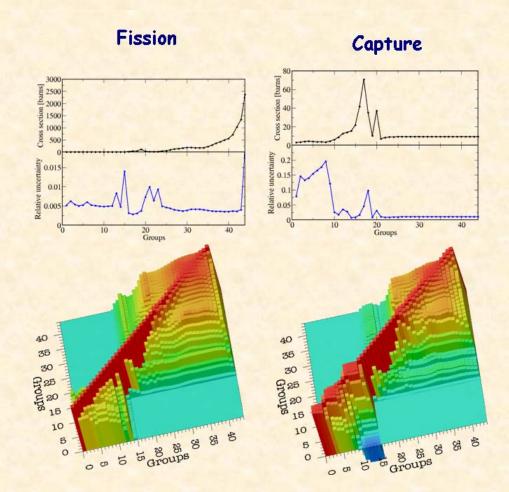
Covariance processing updates

- Updated PUFF-IV to process ENDF/B Compact Covariance Format
- Developed automated computational tool to combine low-energy (< 5 keV) File 33 low-fidelity covariance data from ORNL with high-energy low-fidelity File 33 covariance data from BNL
 - Combined File 33 data produced for 219 fission products
 - Processed covariance data into COVERX format for testing with SCALE sensitivity/uncertainty analysis tools
- Developed computational tool to convert File 32 resonance parameter covariance matrices (RPCM) to File 33 groupwise covariance matrices (GWCM)

File 32 → File 33 Methodology

- RPCMs (File 32) of some actinides is very large
 ²³⁵U RPCM ≈ 1.7 GB
- "Compression" scheme is needed for ENDF
 Convert RPCM (File 32) into GWCM (File 33)

Conversion accomplished in Two-step:

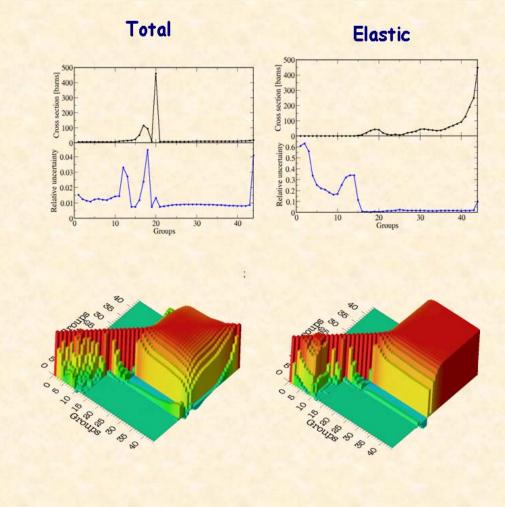

- Use PUFF-IV to Convert RPCM (File 32) into a group-averaged COVERX file
- Use COVCONV module to convert the COVERX file into File 33
- Test on ²³³U: use GWCM (File 33) to compute uncertainties on various group structures, and compare with the "exact" uncertainties (based on the RPCM).

Nuclide	File Size with Full RPCMs
233U	100 MB
235U	1.75 GB
238U	680 MB
²³⁹ Pu	180 MB

²³⁵U Evaluation

- ORNL performed retroactive resonance analysis to calculate RPCM using SAMMY R-matrix software
- Existing ENDF/B File 2 resonance parameters did not change
- Reich-Moore evaluation:
 - Resolved region: 1x10⁻⁵ eV to 2250 eV
 - 3193 resonances with 5 parameters per resonance— 127,467,753 elements in upper triangular RPCM

²³⁸U Evaluation


- ORNL performed new resonance evaluation for ENDF/B-VII.0
- RPCM prepared using retroactive resonance analysis

1000

800

600

- Reich-Moore evaluation:
 - Resolved region: 1x10⁻⁵ eV to 2000 eV
 - 3343 resonances with 3 parameters per resonance no correlations for fission width
- 127,467,753 elements in upper triangular RPCM
 OAK RIDGE NATIONAL LABORATORY
 U. S. DEPARTMENT OF ENERGY

²³⁹Pu Evaluation

- > ORNL performed new evaluation of resolved resonance region using **SAMMY R-matrix** software
- > RPCMs prepared as part of resonance analysis

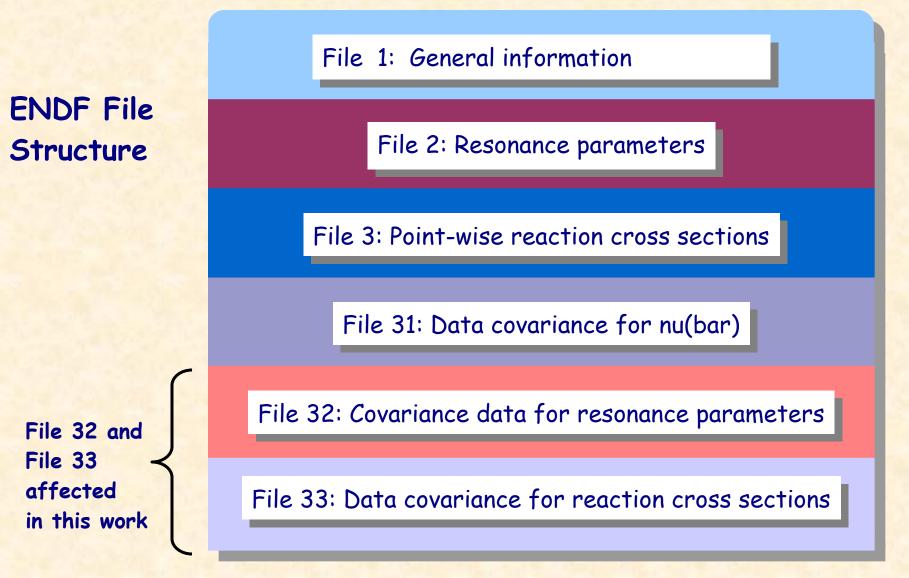
1000 800

> 600 400

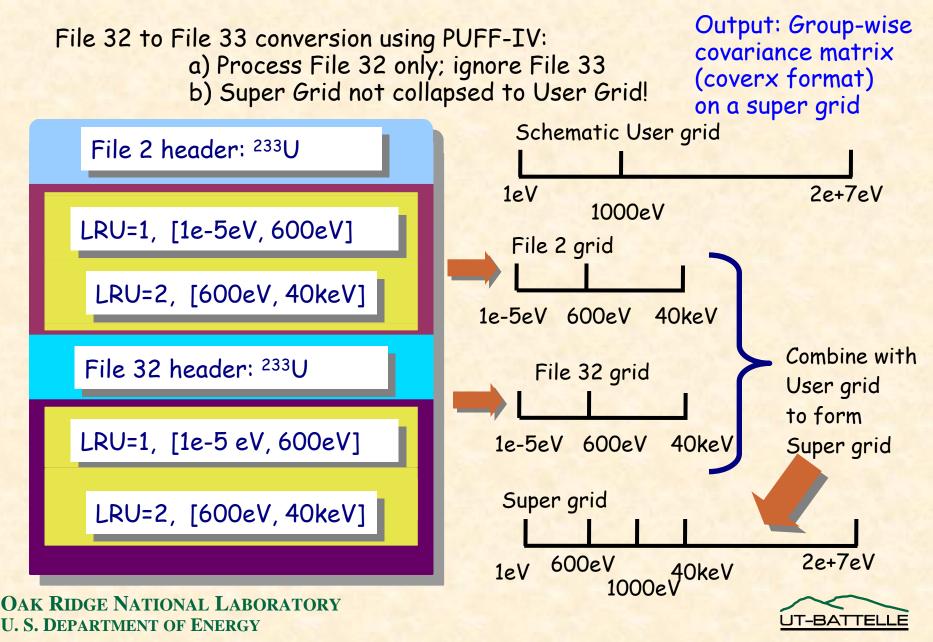
200 0 -200

- Reich-Moore evaluation:
 - Resolved region: 1x10-5 eV to 2500 eV
 - -1045 resonances with 5 parameters per resonance—13,659,195 elements in upper triangular RPCM

Fission Capture 2500 g 3000 ≥ 2000 a 1500 € 2000 1000 \$ 1000 500 £ 0.04 0.4 0.3 0.03 0.02 2 0.2 0.1 10 20 Groups Groups 40 40 35 35 30 30 Groups 1 Groups 15 15 15 10 o a 5 5 groups 8 8 10 5 5 Groups

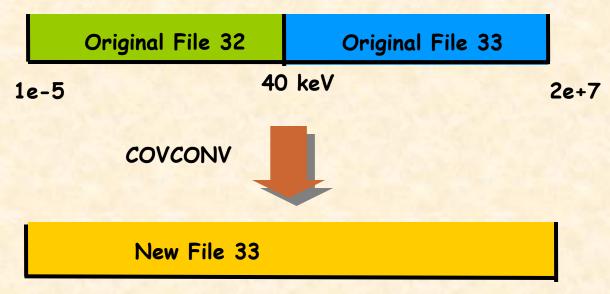

c

...........


30

Methodology to Convert File 32 to File 33

STEP 1.

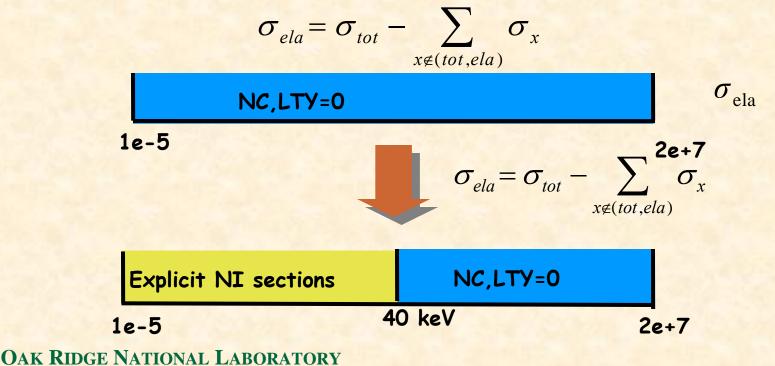

STEP 2.

Convert Coverx file obtained in STEP 1 into File 33 format (COVCONV):

a) For each matrix in Coverx file, the COVCONV module

- converts it to File 33 format (LB=5 full matrix)
- appends it to the prior High-Energy File 33

Finally, manually delete File 32 and replace the original File 33 with the one above



²³³U has an NC File 33 Section with LTY=0 for elastic c.s.

•Loss of precision, due to a single precision ENDF and Coverx format, caused errors in computation of GWCM for the implicit (LTY=0) File 33 MT=2 section (elastic)

•Hence, MT=2 LTY=0 energy range was limited to high energy only, above 40 keV, and covariance matrix computed directly from ENDF parameters below 40 keV.

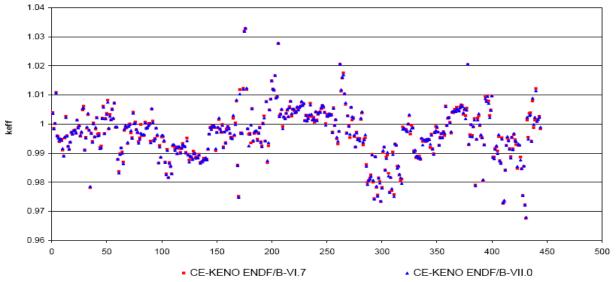
U. S. DEPARTMENT OF ENERGY

AMPX Nuclear Data for SCALE

Cross-Section Processing Updates

- POLIDENT module that generates CE cross-sections from resonance parameters was updated to Fortran 90.
- Updated POLIDENT to handle LRF=7—testing showed excellent agreement with SAMMY results

Library generation and testing activities


- Continuous-energy ENDF/B-VI.7, VI.8, and VII.0 neutron libraries for CE-KENO in SCALE 6—testing in progress
- Coupled neutron-gamma shielding library (200n-44g) based on ENDF/B-VI.8
 - MONACO: New Monte Carlo shielding code in SCALE 6
 - Initiated library testing
- Comprehensive recommended covariance data library prepared for SCALE 5.1 and SCALE 6
 - Use evaluated covariance data where possible—includes new ²³⁵U,
 ²³⁸U, and ²³⁹Pu covariance data
 - ORNL low-energy low-fidelity covariance data
- PUFF-IV used to prepare 15-group ²³⁵U, ²³⁸U, and ²³⁹Pu covariance data for WPEC SG26
 OAK RIDGE NATIONAL LABORATORY
 U.S. DEPARTMENT OF ENERGY

CE-KENO Library Development & Testing

NDF/B-VIL® Data Testin:

July 31, 200

- CE-KENO cross sections for all ENDF/B-VII.0 nuclides have been generated using AMPX
- CE-KENO V.a and CE-KENO-VI as well as the AMPX-generated continuous energy cross sections are being tested extensively with benchmark problems
- Integration of CE and MG transport into single KENO code package along with improved computational efficiency improvements
- Release with SCALE 6 in 2008

Case Number

	Summary of K-eff Results using ENDF/B-VII.0 data and Many Transport Codes					
	Summary of K-eff K	Godiva	Jezebel	Jezebel23		
	MCNP	0.99985	0.99986	0.99964		
	TART	1.00019	1.00010	0.99983		
	COG	1.00057	1.00010	0.99986		
	TRIPOLI (Sublet)	1.00024	0.99991	0.99979		
	TRIPOLI (Lee 1)	1.00015	1.00003	0.99978		
	TRIPOLI (Lee 2)	1.00023	1.00006	0.99981		
	CE-KENO	0.99971	0.99960	0.99938		
	VIM	1.00032	1.00011	0.99981		
	MERCURY	1.00024	1.00071	1.00048		
	MONK	1.00056	1.00066	1.00086		
	AMTRAN (Sn)					
	ARDRA (Sn)					
	MC2000					
	MCU					
	MVP					
	WIMS					

