Determining (n, f) and (n, γ) cross sections: Study of the surrogate method

Collaboration: Lawrence Livermore National Laboratory Lawrence Berkeley National Laboratory and University of Richmond

Shamsu Basunia Nuclear Science Division Lawrence Berkeley National Laboratory

Contents

- The surrogate method provides alternative way to determine nuclear cross section for difficult cases
- Recent experiments provide important cross sections using the surrogate method
 - ²³⁷Np(*n*, *f*) in the 10 to 20 MeV energy range using
 ²³⁸U(³He, *t*)²³⁸Np: pre-equilibrium effect
 - $^{236}U(n, f)$ using $^{238}U(^{3}He, \alpha)^{237}U$: angular momentum effect
 - ¹⁵³Gd(*n*, *y*)¹⁵⁴Gd cross section using ¹⁵⁴Gd(*p*, *p*)¹⁵⁴Gd:
 s-process branch-point

The Surrogate Method

LIBERACE and STARS detectors at the 88-Inch Cyclotron, LBNL

CSEWG Meeting, Nov 2007, BNL

²³⁷Np(*n*, *f*) from ²³⁸U(³He, *t*)²³⁸Np surrogate reaction: pre-equilibrium effect

Ref. 16: O. Shcherbakov et al., J. Nucl. Sci. & Tech., Supp. 2, 230, 2003

Ref. 17: F. Tovesson and T. S. Hill, Phys. Rev. C 75, 034610, 2007 M. S. Basunia *et al.*, submitted to PRC

CSEWG Meeting, Nov 2007, BNL

²³⁶U(*n*, *f*) from ²³⁸U(³He, α)/²³⁵U(³He, α) ratio and absolute: angular momentum effect

B. F. Lyles et al., PRC 76, 014606, 2007

CSEWG Meeting, Nov 2007, BNL

s-process branch-point nucleus ¹⁵³Gd

•^{152,154}Gd cannot be produced by the *r*-process and therefore these abundances can be used to investigate the *s*-process

•(n, γ) cross sections at energies 0-200 keV in branch-point nuclei such as ¹⁵³Gd (for which the time scales for n capture and β -decay are comparable) are needed •¹⁵³Gd is radioactive ($t_{1/2}$ =240 days), making direct measurements very difficult

•Well-suited for surrogate measurement because of neighboring stable Gd isotopes that can be used as targets for measurement and benchmarks.

Courtesy of

N.D. Scielzo, LLNL

(*n*, γ) cross section for ^{153,155,157}Gd isotopes from (*p*, *p*)

Courtesy of <u>N.D. Scielzo, LLNL</u>

Excite Gd nuclei ($S_n \approx 8-9$ MeV) through inelastic (p, p) scattering

