

ENDF/B-VII.0 Validation Testing Using Selected ²³⁵U Thermal Solution Benchmarks

Mike Zerkle Bettis Laboratory Bechtel Bettis, Inc.

Presented at the November 6, 2007 Cross Section Evaluation Working Group (CSEWG) Data Testing Subcommittee Meeting held at Brookhaven National Laboratory

Introduction

- Bettis has performed continuous energy Monte Carlo (RCP01) eigenvalue calculations for a variety of ICSBEP ²³⁵U fueled thermal solution benchmarks with ENDF/B-VI.8 and ENDF/B-VII.0 cross sections.
- RCP01 eigenvalues are calculated based on 50 million neutron histories in ten independent 5 million history jobs.
 - For RCP01, the 95% eigenvalue confidence interval is determined from the variance in the ten independent eigenvalue estimates and is typically less than 0.0005 Δk (i.e., roughly the size of the plot symbol in subsequent graphs).
- Calculated eigenvalues and subsequent correlations are based upon RCP01 results.
- A majority of these calculations use models derived from the ICSBEP Handbook

²³⁵U Solution Benchmarks Analyzed

- HEU-SOL-THERM
 - 9 HEU evaluations, 31 critical configurations that appear in the 2004 edition of the ICSBEP Handbook plus two ORNL experiments (L5, L6).
 - 4 evaluations (8 critical configurations) include a H_2O reflector.
- LEU-SOL-THERM
 - 9 LEU evaluations, 39 critical configurations
 - 4 evaluations (19 critical configurations) include a H_2O reflector.
- Total
 - 72 critical configurations
 - 27 critical configurations include a H₂O reflector

HST Benchmarks

Benchmark Name Benchmark Model k _{eff} (1σ)		ENDF/B-VI.8 k _{eff} (95% CI)	ENDF/B-VII.0 k _{eff} (95% CI)
HST1.1	1.0004(60)	0.99938(30)	0.99717(41)
HST1.2	1.0021(72)	0.99664(35)	0.99515(29)
HST1.3	1.0003(35)	1.00226(18)	1.00027(26)
HST1.4	1.0008(53)	0.99839(44)	0.99663(42)
HST1.5	1.0001(49)	0.99985(30)	0.99740(15)
HST1.6	1.0002(49)	1.00321(34)	1.00076(26)
HST1.7	1.0008(40)	0.99832(39)	0.99635(24)
HST1.8	0.9998(38)	0.99875(30)	0.99647(41)
HST1.9	1.0008(54)	0.99425(32)	0.99265(17)
HST1.10	0.9993(54)	0.99343(17)	0.99101(33)
HST-9.1	0.9990(43)	1.00028(20)	1.00131(25)
HST-9.2	1.0000(39)	1.00063(36)	1.00174(23)
HST-9.3	1.0000(36)	1.00029(26)	1.00117(20)
HST-9.4	0.9986(35)	0.99490(32)	0.99549(34)
HST10.1	1.0000(39)	1.00041(19)	1.00055(26)
HST11.1	1.0000(23)	1.00473(21)	1.00417(23)
HST11.2	1.0000(23)	1.00089(25)	1.00025(33)
HST12.1	0.9999(58)	1.00084(19)	1.00037(13)
HST13.1	1.0012(26)	0.99877(16)	0.99765(16)
HST32.1	1.0015(26)	0.99831(14)	0.99864(12)

 $\sigma < |\Delta \mathbf{k}| \le 2\sigma$ $|\Delta \mathbf{k}| > 2\sigma$

HST Benchmarks (Cont'd)

Benchmark Name	nchmark Name Benchmark Model k _{eff} (1σ)		ENDF/B-VII.0 k _{eff} (95% CI)
HST42.1	0.9957(39)	0.99639(17)	0.99585(14)
HST42.2	0.9965(36)	0.99608(15)	0.99572(17)
HST42.3	0.9994(28)	0.99993(12)	1.00006(10)
HST42.4	1.0000(34)	1.00119(13)	1.00154(11)
HST42.5	1.0000(34)	0.99892(10)	0.99949(09)
HST42.6	1.0000(37)	0.99919(10)	0.99978(08)
HST42.7	1.0000(36)	1.00004(04)	1.00070(07)
HST42.8	1.0000(35)	1.00058(11)	1.00145(11)
HST43.1	0.9986(31)	0.99564(29)	0.99366(29)
HST43.2	0.9995(26)	1.00615(21)	1.00437(14)
HST43.3	0.9990(25)	1.00122(20)	1.00006(19)
L5	1.0000	1.00233(31)	1.00110(32)
L6	1.0000	1.00176(29)	1.00091(43)

LST Benchmarks

Benchmark Name	Benchmark Model	ENDF/B-VI.8	ENDF/B-VII.0
	k _{eff} (1σ)	k _{eff} (95% CI)	k _{eff} (95% CI)
LST1	0.9991(29)	1.00939(26)	1.01121(23)
LST2.1	1.0038(40)	0.99771(23)	0.99487(25)
LST2.2	1.0024(37)	0.99396(14)	0.99204(12)
LST3.3	0.9995(42)	0.99900(26)	0.99945(26)
LST3.6	0.9999(49)	0.99700(17)	0.99749(10)
LST3.9	0.9996(52)	0.99603(17)	0.99723(14)
LST4.1 LST4.2 LST4.3 LST4.4 LST4.5 LST4.6	0.9994(08) 0.9999(09) 0.9999(09) 0.9999(10) 0.9999(10) 0.9999(10) 0.9994(11)	0.99883(24) 1.00007(29) 0.99813(25) 1.00043(18) 1.00024(19) 0.99928(13)	0.99988(13) 1.00061(10) 0.99852(20) 1.00089(18) 1.00090(17) 1.00066(16)
LST4.7	0.9996(11)	0.99960(11)	1.00066(17) $0.99743(27)$ $0.99881(21)$ $0.99649(18)$ $0.99815(15)$ $0.99801(22)$
LST7.1	0.9961(09)	0.99365(20)	
LST7.2	0.9973(09)	0.99606(23)	
LST7.3	0.9985(10)	0.99493(22)	
LST7.4	0.9988(11)	0.99682(12)	
LST7.5	0.9983(11)	0.99609(16)	

 $\sigma < |\Delta \mathbf{k}| \le 2\sigma$ $|\Delta \mathbf{k}| > 2\sigma$

LST Benchmarks (Cont'd)

Benchmark Name	Benchmark Model k _{eff} (1σ)	ENDF/B-VI.8 k _{eff} (95% CI)	ENDF/B-VII.0 k _{eff} (95% CI)
LST16.1	0.9996(13)	1.00382(17)	1.00440(30)
LST16.2	0.9999(13)	1.00393(22)	1.00409(26)
LST16.3	0.9994(14)	1.00383(20)	1.00415(15)
LST16.4	0.9996(14)	1.00304(19)	1.00354(26)
LST16.5	0.9995(14)	1.00263(12)	1.00312(18)
LST16.6	0.9992(15)	1.00102(26)	1.00176(20)
LST16.7	0.9994(15)	1.00228(25)	1.00291(20)
LST17.1	0.9981(13)	0.99366(21)	0.99553(19)
LST17.2	0.9986(13)	0.99491(23)	0.99634(15)
LST17.3	0.9989(14)	0.99666(18)	0.99737(21)
LST17.4	0.9992(14)	0.99831(14)	0.99894(19)
LST17.5	0.9987(15)	0.99907(20)	1.00029(22)
LST17.6	0.9996(15)	0.99960(22)	0.99992(24)
LST20.1	0.9995(10)	0.99844(18)	0.99926(14)
LST20.2	0.9996(10)	0.99811(20)	0.99868(20)
LST20.3	0.9997(12)	0.99738(09)	0.99826(13)
LST20.4	0.9998(12)	0.99838(18)	0.99922(16)
LST21.1	0.9983(09)	0.99673(21)	0.99832(27)
LST21.2	0.9985(10)	0.99696(12)	0.99869(17)
LST21.3	0.9989(11)	0.99608(22)	0.99753(17)
LST21.4	0.9993(12)	0.99788(11)	0.99917(14)

 $\sigma < |\Delta \mathbf{k}| \le 2\sigma$ $|\Delta \mathbf{k}| > 2\sigma$

Trend vs. ATLF for HST Benchmarks

HEU-SOL-THERM Eigenvalues with ENDF/B-VII.0 Cross Sections

		HST-001	♦ HST-009	△ HST-010	• HST-011
× HST-012	X HST-013	+ HST-032	HST-042	♦ HST-043	▲ L5, L6

Trend vs. ATFF for HST Benchmarks

HEU-SOL-THERM Eigenvalues with ENDF/B-VII.0 Cross Sections

	ENDF/B-VII.0	HST-001	♦ HST-009	△ HST-010	• HST-011
× HST-012	X HST-013	+ HST-032	HST-042	♦ HST-043	▲ L5, L6

Trend vs. Hydrogen Absorption in the Solution for HST Benchmarks

HEU-SOL-THERM Eigenvalues with ENDF/B-VII.0 Cross Sections

ENDF/B-VI.8		HST-001	♦ HST-009	△ HST-010	• HST-011
× HST-012	* HST-013	+ HST-032	HST-042	• HST-043	▲ L5, L6

Trend vs. ATLF for HST + LST Benchmarks

HEU-SOL-THERM & LEU-SOL-THERM Eigenvalues for ENDF/B-VII.0 Cross Sections

Trend vs. ATFF for HST + LST Benchmarks

HEU-SOL-THERM & LEU-SOL-THERM Eigenvalues for ENDF/B-VII.0 Cross Sections

Trend vs. Hydrogen Absorption in the Solution for HST + LST Benchmarks

HEU-SOL-THERM & LEU-SOL-THERM Eigenvalues for ENDF/B-VII.0 Cross Sections

Summary and Conclusions

• ATLF

- k(ATLF) = 0.9994(13) 0.0006(49)*ATLF ENDF/
- k(ATLF) = 0.9998(14) 0.0022(51)*ATLF
- ENDF/B-VI.8 ENDF/B-VII.0

- ATFF
 - k(ATFF) = 0.9995(09) 0.0001(93)*ATFF ENDF/B-VI.8
 - k(ATFF) = 0.9995(10) 0.0029(98)*ATFF

• H_{abs}

- $k(H_{abs}) = 0.9995(13) + 0.0003(55)* H_{abs}$
- $k(H_{abs}) = 0.9989(14) 0.0021(59) * H_{abs}$

ENDF/B-VI.8 ENDF/B-VII.0

ENDF/B-VII.0

- Observing some reduction in performance with respect to trend with ATLF, ATFF, H_{abs} for HST+LST Benchmarks using ENDF/B-VII.0.
 - Within statistics
 - Behavior not observed in sensitivity analyses performed during ENDF/B-VII beta testing.