Titanium Cross Section Evaluation

CSEWG Annual Meeting, Nov. 6 - 8, 2007, Upton, NY

S.Y. Oh^{*,**}, T. Kawano^{*}, S. Kahler^{*}, D. Dashdorj⁺, and S. Cowell^{*}

* Los Alamos National Laboratory, Los Alamos, NM 87545 USA
 **Visiting staff from the Korea Atomic Energy Research Institute, Daejeon, Korea
 * North Carolina State University, Raleigh, NC 27695 USA

1. Why do we re-evaluate Ti data?

Importance of Ti

- Structural material
- Requests from the Criticality Safety Program, ...
- Any problem in ENDF/B-VII.0 Ti data?
 - Discrepancies in Criticality Benchmarks
 - Discrepancies in Shielding Benchmarks
- Any new data?
 - New compilation of resonance & thermal data (Mughabghab 2006)
 - Some experimental works by Dashdorj et al.(2005), Voinov et al.(2003), ...
 - Reference Input Parameter Library (RIPL-2, 2003)

Operated by Los Alamos National Security, LLC for NNSA

1.1 Criticality Experiments Involving Ti

HEU-Metal-Fast (HMF) 079 Series (varying with Ti thickness)

Slide 2

1.2 Discrepancies in Criticality Benchmarks

1.2 Discrepancies in Criticality Benchmarks

1.3 Discrepancies in Shielding Benchmarks

1.3 Discrepancies in Shielding Benchmarks (cont.)

LLNL Pulsed Source with Ti shields

FIG. 122: Neutron spectrum for the LLNL Pulsed Sphere, Ti (1.2 mfp) benchmark, angle=39°.

1.4 Status of Evaluated Files of Ti

- ENDF/B-VII.0 (dist. 2006)
 - Adopted JENDL-3.3 (with minor modification)
- JENDL-3.3 (dist. 2002)
 - JENDL-fusion, -activation,... + Re-evaluation by Asami in 2000
 - Isotopic files for all natural isotopes (Ti-46, 47, 48, 49, and 50)
 - Resonance parameters from Mughabghab 1981;
 Model calculations (CASTHY, EGNASH, ...) + Experiments
- JEFF-3.1 (dist. 2005)
 - 0.2 ~ 20 MeV, new evaluation by Tagesen & Vonach in 2004;
 < 0.2 MeV, adopted ENDF/B-VI (total and capture CS's for Ti-nat.)
 - Isotopic files for all natural isotopes
 - Model calculations (TALYS) + Experiments (GLUCS)

2. Evaluation Method

- We focused on the high energy region.
 - Hundred keV ~ 20 MeV
 - Model calculations: GNASH, CoH, KALMAN
 - Adjusting model parameters based on experiments:
 - the germanium array for neutron induced excitations (GEANIE) at LANSCE, and
 - other (n,p), (n,α) , ... experiments
- We adopted new resonance parameters and thermal CSs.
 - "Atlas of Neutron Resonances" (Mughabghab 2006)
 - Resolved resonances up to hundred keV
 - Some adjustments were needed.

2.1 Evaluation Plan

Resonance Parameters (MF=2) Mughabghab 2006 Neutron Cross Sections (MF=3) CoH Total Total - Sum of Partial CSs Elastic Scattering Threshold Reactions: (n,2n), (n,n'), (n,p),... **GNASH** COH + DSDCapture Angular Distribution (MF=4) (n,n), (n,n') discrete CoH Energy-Angle Distribution (MF=6) (n,2n), (n,n')_continuum, $(n,n\alpha), (n,np)$ GNASH Covariance of Neutron CSs (MF=33) GNASH or CoH + KAI MAN

2.2 GNASH Modeling (1)

- GNASH
 - Statistical Hauser-Feshbach theory + Preequilibrium model
 - From keV up to hundred MeV region
- Transmission coefficients calculation
 - Koning and Delaroche global optical potentials for *n* and *p*
 - Avrigeanu, Hodgson, and Avrigeanu potentials for lpha
- Use/Adjustments of model parameters
 - Spin distribution of pre-equilibrium reaction
 - calculated using the Feshbach-Kerman-Koonin theory
 - different from the distribution of compound nucleus
 - Adjustments of model parameters (⁴⁸Ti)
 - level density parameter of ⁴⁸Sc
 - $-\gamma$ branching ratios of some discrete levels

2.2 GNASH Modeling (2)

2.2 GNASH Modeling (3)

Inclusion of direct reaction cross sections (⁴⁸Ti)

- Coupled channel and DWBA calculations
- Direct inelastic scattering for 0+, 2+, 4+, 6+ rotational band members
- Coupled channel potential is assumed to be similar to the spherical potential of Koning and Delaroche with proper deformation parameters.

See details in

Dashdorj et al., Phyical Review C 75, 054612 (2007)

3. Evaluation Results

3.1 Thermal neutron (2200 m/s) cross sections

Capture CSs (upper) and capture resonance integrals (lower) (b)

Isotope	ENDF/B-	Present	Mughabghab
(nat. abd.)	VII		2006
22-Ti-46	0.58	0.61	0.59 +- 0.18
(8.25%)	0.32	0.35	0.30 +- 0.09
22-Ti-47	1.71	1.58	1.63 +- 0.04
(7.44%)	1.40	1.26	1.5 +- 0.2
22-Ti-48	<u>7.86</u>	<u>8.34</u>	<u>8.32</u> +- 0.16
(73.72%)	3.70	3.73	3.9 +- 0.2
22-Ti-49	1.84	1.87	1.87 +- 0.04
(5.41%)	0.88	0.92	1.2 +- 0.2
22-Ti-50	0.18	0.18	0.179 +- 0.003
(5.18%)	0.087	0.087	0.083 +- 0.006

- Most significant revision of Ti-48 capture CS
- → 6% increase in Tielement thermal capture CS

3. Evaluation Results

3.1 Thermal neutron (2200 m/s) cross sections (cont.)

Elastic scattering cross sections in barn

Isotope (nat. abd.)	ENDF/B- VII	Present	Mughabghab 2006
22-Ti-46 (8.25%)	3.72	2.73	2.72 +- 0.06
22-Ti-47 (7.44%)	3.13	3.50	3.1 +- 0.2
22-Ti-48 (73.72%)	4.37	4.35	4.1 +- 0.2
22-Ti-49 (5.41%)	0.70	0.28	0.7 +- 0.3
22-Ti-50 (5.18%)	3.78	4.30	3.7 +- 0.3

 Rather big changes in elastic CSs, but not in elemental level

Needs revisit
 scattering lengths
 (R' and b_coh)

3. Evaluation Results

3.2 Results of Criticality Benchmark Calculations

> 17

3.3 Discussion on the Benchmark Results

- New evaluation resulted in 0.1 ~ 0.4 %∆k decrease in both hard spectrum experiments (HMF 079 series and HMF 034) and soft spectrum cases (HMM 001 and 015).
- The decrease in calculated criticalities is the result of combined effects of
 - Revised resonances (about 0.2 % Δk decrease in HMM 001 and 015) and
 - Reduced elastic scattering cross sections above hundred keV (0.1 \sim 0.2% Δ k in HMF series)
- The effect of inelastic scattering cross sections have not been investigated thoroughly yet.

Operated by Los Alamos National Security, LLC for NNSA

4. Future Work

- The evaluation has not been completed.
- Resonance region
 - Revisiting scattering lengths
- High energy region
 - Adjustment or justification of the reaction model parameters for Ti isotopes other than Ti-48
 - Evaluation of the covariance of the cross sections
 - Making complete files in ENDF-6 format, and so on

